Z3
Public Member Functions
BitVecRef Class Reference
+ Inheritance diagram for BitVecRef:

Public Member Functions

def sort (self)
 
def size (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __or__ (self, other)
 
def __ror__ (self, other)
 
def __and__ (self, other)
 
def __rand__ (self, other)
 
def __xor__ (self, other)
 
def __rxor__ (self, other)
 
def __pos__ (self)
 
def __neg__ (self)
 
def __invert__ (self)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
def __rshift__ (self, other)
 
def __lshift__ (self, other)
 
def __rrshift__ (self, other)
 
def __rlshift__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def as_ast (self)
 
def get_id (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Bit-vector expressions.

Definition at line 3449 of file z3py.py.

Member Function Documentation

◆ __add__()

def __add__ (   self,
  other 
)
Create the Z3 expression `self + other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x + y
x + y
>>> (x + y).sort()
BitVec(32)

Definition at line 3474 of file z3py.py.

3474 def __add__(self, other):
3475 """Create the Z3 expression `self + other`.
3476
3477 >>> x = BitVec('x', 32)
3478 >>> y = BitVec('y', 32)
3479 >>> x + y
3480 x + y
3481 >>> (x + y).sort()
3482 BitVec(32)
3483 """
3484 a, b = _coerce_exprs(self, other)
3485 return BitVecRef(Z3_mk_bvadd(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3486
def BitVec(name, bv, ctx=None)
Definition: z3py.py:3999
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.

◆ __and__()

def __and__ (   self,
  other 
)
Create the Z3 expression bitwise-and `self & other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x & y
x & y
>>> (x & y).sort()
BitVec(32)

Definition at line 3566 of file z3py.py.

3566 def __and__(self, other):
3567 """Create the Z3 expression bitwise-and `self & other`.
3568
3569 >>> x = BitVec('x', 32)
3570 >>> y = BitVec('y', 32)
3571 >>> x & y
3572 x & y
3573 >>> (x & y).sort()
3574 BitVec(32)
3575 """
3576 a, b = _coerce_exprs(self, other)
3577 return BitVecRef(Z3_mk_bvand(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3578
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.

◆ __div__()

def __div__ (   self,
  other 
)
Create the Z3 expression (signed) division `self / other`.

Use the function UDiv() for unsigned division.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x / y
x/y
>>> (x / y).sort()
BitVec(32)
>>> (x / y).sexpr()
'(bvsdiv x y)'
>>> UDiv(x, y).sexpr()
'(bvudiv x y)'

Definition at line 3643 of file z3py.py.

3643 def __div__(self, other):
3644 """Create the Z3 expression (signed) division `self / other`.
3645
3646 Use the function UDiv() for unsigned division.
3647
3648 >>> x = BitVec('x', 32)
3649 >>> y = BitVec('y', 32)
3650 >>> x / y
3651 x/y
3652 >>> (x / y).sort()
3653 BitVec(32)
3654 >>> (x / y).sexpr()
3655 '(bvsdiv x y)'
3656 >>> UDiv(x, y).sexpr()
3657 '(bvudiv x y)'
3658 """
3659 a, b = _coerce_exprs(self, other)
3660 return BitVecRef(Z3_mk_bvsdiv(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3661
def UDiv(a, b)
Definition: z3py.py:4198
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.

Referenced by ArithRef.__truediv__(), BitVecRef.__truediv__(), and FPRef.__truediv__().

◆ __ge__()

def __ge__ (   self,
  other 
)
Create the Z3 expression (signed) `other >= self`.

Use the function UGE() for unsigned greater than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> x >= y
x >= y
>>> (x >= y).sexpr()
'(bvsge x y)'
>>> UGE(x, y).sexpr()
'(bvuge x y)'

Definition at line 3773 of file z3py.py.

3773 def __ge__(self, other):
3774 """Create the Z3 expression (signed) `other >= self`.
3775
3776 Use the function UGE() for unsigned greater than or equal to.
3777
3778 >>> x, y = BitVecs('x y', 32)
3779 >>> x >= y
3780 x >= y
3781 >>> (x >= y).sexpr()
3782 '(bvsge x y)'
3783 >>> UGE(x, y).sexpr()
3784 '(bvuge x y)'
3785 """
3786 a, b = _coerce_exprs(self, other)
3787 return BoolRef(Z3_mk_bvsge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3788
def BitVecs(names, bv, ctx=None)
Definition: z3py.py:4023
def UGE(a, b)
Definition: z3py.py:4162
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.

◆ __gt__()

def __gt__ (   self,
  other 
)
Create the Z3 expression (signed) `other > self`.

Use the function UGT() for unsigned greater than.

>>> x, y = BitVecs('x y', 32)
>>> x > y
x > y
>>> (x > y).sexpr()
'(bvsgt x y)'
>>> UGT(x, y).sexpr()
'(bvugt x y)'

Definition at line 3757 of file z3py.py.

3757 def __gt__(self, other):
3758 """Create the Z3 expression (signed) `other > self`.
3759
3760 Use the function UGT() for unsigned greater than.
3761
3762 >>> x, y = BitVecs('x y', 32)
3763 >>> x > y
3764 x > y
3765 >>> (x > y).sexpr()
3766 '(bvsgt x y)'
3767 >>> UGT(x, y).sexpr()
3768 '(bvugt x y)'
3769 """
3770 a, b = _coerce_exprs(self, other)
3771 return BoolRef(Z3_mk_bvsgt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3772
def UGT(a, b)
Definition: z3py.py:4180
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.

◆ __invert__()

def __invert__ (   self)
Create the Z3 expression bitwise-not `~self`.

>>> x = BitVec('x', 32)
>>> ~x
~x
>>> simplify(~(~x))
x

Definition at line 3632 of file z3py.py.

3632 def __invert__(self):
3633 """Create the Z3 expression bitwise-not `~self`.
3634
3635 >>> x = BitVec('x', 32)
3636 >>> ~x
3637 ~x
3638 >>> simplify(~(~x))
3639 x
3640 """
3641 return BitVecRef(Z3_mk_bvnot(self.ctx_ref(), self.as_ast()), self.ctx)
3642
def simplify(a, *arguments, **keywords)
Utils.
Definition: z3py.py:8645
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.

◆ __le__()

def __le__ (   self,
  other 
)
Create the Z3 expression (signed) `other <= self`.

Use the function ULE() for unsigned less than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> x <= y
x <= y
>>> (x <= y).sexpr()
'(bvsle x y)'
>>> ULE(x, y).sexpr()
'(bvule x y)'

Definition at line 3725 of file z3py.py.

3725 def __le__(self, other):
3726 """Create the Z3 expression (signed) `other <= self`.
3727
3728 Use the function ULE() for unsigned less than or equal to.
3729
3730 >>> x, y = BitVecs('x y', 32)
3731 >>> x <= y
3732 x <= y
3733 >>> (x <= y).sexpr()
3734 '(bvsle x y)'
3735 >>> ULE(x, y).sexpr()
3736 '(bvule x y)'
3737 """
3738 a, b = _coerce_exprs(self, other)
3739 return BoolRef(Z3_mk_bvsle(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3740
def ULE(a, b)
Definition: z3py.py:4126
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.

◆ __lshift__()

def __lshift__ (   self,
  other 
)
Create the Z3 expression left shift `self << other`

>>> x, y = BitVecs('x y', 32)
>>> x << y
x << y
>>> (x << y).sexpr()
'(bvshl x y)'
>>> simplify(BitVecVal(2, 3) << 1)
4

Definition at line 3819 of file z3py.py.

3819 def __lshift__(self, other):
3820 """Create the Z3 expression left shift `self << other`
3821
3822 >>> x, y = BitVecs('x y', 32)
3823 >>> x << y
3824 x << y
3825 >>> (x << y).sexpr()
3826 '(bvshl x y)'
3827 >>> simplify(BitVecVal(2, 3) << 1)
3828 4
3829 """
3830 a, b = _coerce_exprs(self, other)
3831 return BitVecRef(Z3_mk_bvshl(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3832
def BitVecVal(val, bv, ctx=None)
Definition: z3py.py:3982
Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)
Shift left.

◆ __lt__()

def __lt__ (   self,
  other 
)
Create the Z3 expression (signed) `other < self`.

Use the function ULT() for unsigned less than.

>>> x, y = BitVecs('x y', 32)
>>> x < y
x < y
>>> (x < y).sexpr()
'(bvslt x y)'
>>> ULT(x, y).sexpr()
'(bvult x y)'

Definition at line 3741 of file z3py.py.

3741 def __lt__(self, other):
3742 """Create the Z3 expression (signed) `other < self`.
3743
3744 Use the function ULT() for unsigned less than.
3745
3746 >>> x, y = BitVecs('x y', 32)
3747 >>> x < y
3748 x < y
3749 >>> (x < y).sexpr()
3750 '(bvslt x y)'
3751 >>> ULT(x, y).sexpr()
3752 '(bvult x y)'
3753 """
3754 a, b = _coerce_exprs(self, other)
3755 return BoolRef(Z3_mk_bvslt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3756
def ULT(a, b)
Definition: z3py.py:4144
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.

◆ __mod__()

def __mod__ (   self,
  other 
)
Create the Z3 expression (signed) mod `self % other`.

Use the function URem() for unsigned remainder, and SRem() for signed remainder.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x % y
x%y
>>> (x % y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> URem(x, y).sexpr()
'(bvurem x y)'
>>> SRem(x, y).sexpr()
'(bvsrem x y)'

Definition at line 3686 of file z3py.py.

3686 def __mod__(self, other):
3687 """Create the Z3 expression (signed) mod `self % other`.
3688
3689 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3690
3691 >>> x = BitVec('x', 32)
3692 >>> y = BitVec('y', 32)
3693 >>> x % y
3694 x%y
3695 >>> (x % y).sort()
3696 BitVec(32)
3697 >>> (x % y).sexpr()
3698 '(bvsmod x y)'
3699 >>> URem(x, y).sexpr()
3700 '(bvurem x y)'
3701 >>> SRem(x, y).sexpr()
3702 '(bvsrem x y)'
3703 """
3704 a, b = _coerce_exprs(self, other)
3705 return BitVecRef(Z3_mk_bvsmod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3706
def SRem(a, b)
Definition: z3py.py:4240
def URem(a, b)
Definition: z3py.py:4219
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).

◆ __mul__()

def __mul__ (   self,
  other 
)
Create the Z3 expression `self * other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x * y
x*y
>>> (x * y).sort()
BitVec(32)

Definition at line 3497 of file z3py.py.

3497 def __mul__(self, other):
3498 """Create the Z3 expression `self * other`.
3499
3500 >>> x = BitVec('x', 32)
3501 >>> y = BitVec('y', 32)
3502 >>> x * y
3503 x*y
3504 >>> (x * y).sort()
3505 BitVec(32)
3506 """
3507 a, b = _coerce_exprs(self, other)
3508 return BitVecRef(Z3_mk_bvmul(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3509
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.

◆ __neg__()

def __neg__ (   self)
Return an expression representing `-self`.

>>> x = BitVec('x', 32)
>>> -x
-x
>>> simplify(-(-x))
x

Definition at line 3621 of file z3py.py.

3621 def __neg__(self):
3622 """Return an expression representing `-self`.
3623
3624 >>> x = BitVec('x', 32)
3625 >>> -x
3626 -x
3627 >>> simplify(-(-x))
3628 x
3629 """
3630 return BitVecRef(Z3_mk_bvneg(self.ctx_ref(), self.as_ast()), self.ctx)
3631
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.

◆ __or__()

def __or__ (   self,
  other 
)
Create the Z3 expression bitwise-or `self | other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x | y
x | y
>>> (x | y).sort()
BitVec(32)

Definition at line 3543 of file z3py.py.

3543 def __or__(self, other):
3544 """Create the Z3 expression bitwise-or `self | other`.
3545
3546 >>> x = BitVec('x', 32)
3547 >>> y = BitVec('y', 32)
3548 >>> x | y
3549 x | y
3550 >>> (x | y).sort()
3551 BitVec(32)
3552 """
3553 a, b = _coerce_exprs(self, other)
3554 return BitVecRef(Z3_mk_bvor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3555
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.

◆ __pos__()

def __pos__ (   self)
Return `self`.

>>> x = BitVec('x', 32)
>>> +x
x

Definition at line 3612 of file z3py.py.

3612 def __pos__(self):
3613 """Return `self`.
3614
3615 >>> x = BitVec('x', 32)
3616 >>> +x
3617 x
3618 """
3619 return self
3620

◆ __radd__()

def __radd__ (   self,
  other 
)
Create the Z3 expression `other + self`.

>>> x = BitVec('x', 32)
>>> 10 + x
10 + x

Definition at line 3487 of file z3py.py.

3487 def __radd__(self, other):
3488 """Create the Z3 expression `other + self`.
3489
3490 >>> x = BitVec('x', 32)
3491 >>> 10 + x
3492 10 + x
3493 """
3494 a, b = _coerce_exprs(self, other)
3495 return BitVecRef(Z3_mk_bvadd(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3496

◆ __rand__()

def __rand__ (   self,
  other 
)
Create the Z3 expression bitwise-or `other & self`.

>>> x = BitVec('x', 32)
>>> 10 & x
10 & x

Definition at line 3579 of file z3py.py.

3579 def __rand__(self, other):
3580 """Create the Z3 expression bitwise-or `other & self`.
3581
3582 >>> x = BitVec('x', 32)
3583 >>> 10 & x
3584 10 & x
3585 """
3586 a, b = _coerce_exprs(self, other)
3587 return BitVecRef(Z3_mk_bvand(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3588

◆ __rdiv__()

def __rdiv__ (   self,
  other 
)
Create the Z3 expression (signed) division `other / self`.

Use the function UDiv() for unsigned division.

>>> x = BitVec('x', 32)
>>> 10 / x
10/x
>>> (10 / x).sexpr()
'(bvsdiv #x0000000a x)'
>>> UDiv(10, x).sexpr()
'(bvudiv #x0000000a x)'

Definition at line 3666 of file z3py.py.

3666 def __rdiv__(self, other):
3667 """Create the Z3 expression (signed) division `other / self`.
3668
3669 Use the function UDiv() for unsigned division.
3670
3671 >>> x = BitVec('x', 32)
3672 >>> 10 / x
3673 10/x
3674 >>> (10 / x).sexpr()
3675 '(bvsdiv #x0000000a x)'
3676 >>> UDiv(10, x).sexpr()
3677 '(bvudiv #x0000000a x)'
3678 """
3679 a, b = _coerce_exprs(self, other)
3680 return BitVecRef(Z3_mk_bvsdiv(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3681

Referenced by ArithRef.__rtruediv__(), BitVecRef.__rtruediv__(), and FPRef.__rtruediv__().

◆ __rlshift__()

def __rlshift__ (   self,
  other 
)
Create the Z3 expression left shift `other << self`.

Use the function LShR() for the right logical shift

>>> x = BitVec('x', 32)
>>> 10 << x
10 << x
>>> (10 << x).sexpr()
'(bvshl #x0000000a x)'

Definition at line 3847 of file z3py.py.

3847 def __rlshift__(self, other):
3848 """Create the Z3 expression left shift `other << self`.
3849
3850 Use the function LShR() for the right logical shift
3851
3852 >>> x = BitVec('x', 32)
3853 >>> 10 << x
3854 10 << x
3855 >>> (10 << x).sexpr()
3856 '(bvshl #x0000000a x)'
3857 """
3858 a, b = _coerce_exprs(self, other)
3859 return BitVecRef(Z3_mk_bvshl(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3860
3861
def LShR(a, b)
Definition: z3py.py:4261

◆ __rmod__()

def __rmod__ (   self,
  other 
)
Create the Z3 expression (signed) mod `other % self`.

Use the function URem() for unsigned remainder, and SRem() for signed remainder.

>>> x = BitVec('x', 32)
>>> 10 % x
10%x
>>> (10 % x).sexpr()
'(bvsmod #x0000000a x)'
>>> URem(10, x).sexpr()
'(bvurem #x0000000a x)'
>>> SRem(10, x).sexpr()
'(bvsrem #x0000000a x)'

Definition at line 3707 of file z3py.py.

3707 def __rmod__(self, other):
3708 """Create the Z3 expression (signed) mod `other % self`.
3709
3710 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3711
3712 >>> x = BitVec('x', 32)
3713 >>> 10 % x
3714 10%x
3715 >>> (10 % x).sexpr()
3716 '(bvsmod #x0000000a x)'
3717 >>> URem(10, x).sexpr()
3718 '(bvurem #x0000000a x)'
3719 >>> SRem(10, x).sexpr()
3720 '(bvsrem #x0000000a x)'
3721 """
3722 a, b = _coerce_exprs(self, other)
3723 return BitVecRef(Z3_mk_bvsmod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3724

◆ __rmul__()

def __rmul__ (   self,
  other 
)
Create the Z3 expression `other * self`.

>>> x = BitVec('x', 32)
>>> 10 * x
10*x

Definition at line 3510 of file z3py.py.

3510 def __rmul__(self, other):
3511 """Create the Z3 expression `other * self`.
3512
3513 >>> x = BitVec('x', 32)
3514 >>> 10 * x
3515 10*x
3516 """
3517 a, b = _coerce_exprs(self, other)
3518 return BitVecRef(Z3_mk_bvmul(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3519

◆ __ror__()

def __ror__ (   self,
  other 
)
Create the Z3 expression bitwise-or `other | self`.

>>> x = BitVec('x', 32)
>>> 10 | x
10 | x

Definition at line 3556 of file z3py.py.

3556 def __ror__(self, other):
3557 """Create the Z3 expression bitwise-or `other | self`.
3558
3559 >>> x = BitVec('x', 32)
3560 >>> 10 | x
3561 10 | x
3562 """
3563 a, b = _coerce_exprs(self, other)
3564 return BitVecRef(Z3_mk_bvor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3565

◆ __rrshift__()

def __rrshift__ (   self,
  other 
)
Create the Z3 expression (arithmetical) right shift `other` >> `self`.

Use the function LShR() for the right logical shift

>>> x = BitVec('x', 32)
>>> 10 >> x
10 >> x
>>> (10 >> x).sexpr()
'(bvashr #x0000000a x)'

Definition at line 3833 of file z3py.py.

3833 def __rrshift__(self, other):
3834 """Create the Z3 expression (arithmetical) right shift `other` >> `self`.
3835
3836 Use the function LShR() for the right logical shift
3837
3838 >>> x = BitVec('x', 32)
3839 >>> 10 >> x
3840 10 >> x
3841 >>> (10 >> x).sexpr()
3842 '(bvashr #x0000000a x)'
3843 """
3844 a, b = _coerce_exprs(self, other)
3845 return BitVecRef(Z3_mk_bvashr(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3846
Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)
Arithmetic shift right.

◆ __rshift__()

def __rshift__ (   self,
  other 
)
Create the Z3 expression (arithmetical) right shift `self >> other`

Use the function LShR() for the right logical shift

>>> x, y = BitVecs('x y', 32)
>>> x >> y
x >> y
>>> (x >> y).sexpr()
'(bvashr x y)'
>>> LShR(x, y).sexpr()
'(bvlshr x y)'
>>> BitVecVal(4, 3)
4
>>> BitVecVal(4, 3).as_signed_long()
-4
>>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
-2
>>> simplify(BitVecVal(4, 3) >> 1)
6
>>> simplify(LShR(BitVecVal(4, 3), 1))
2
>>> simplify(BitVecVal(2, 3) >> 1)
1
>>> simplify(LShR(BitVecVal(2, 3), 1))
1

Definition at line 3789 of file z3py.py.

3789 def __rshift__(self, other):
3790 """Create the Z3 expression (arithmetical) right shift `self >> other`
3791
3792 Use the function LShR() for the right logical shift
3793
3794 >>> x, y = BitVecs('x y', 32)
3795 >>> x >> y
3796 x >> y
3797 >>> (x >> y).sexpr()
3798 '(bvashr x y)'
3799 >>> LShR(x, y).sexpr()
3800 '(bvlshr x y)'
3801 >>> BitVecVal(4, 3)
3802 4
3803 >>> BitVecVal(4, 3).as_signed_long()
3804 -4
3805 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
3806 -2
3807 >>> simplify(BitVecVal(4, 3) >> 1)
3808 6
3809 >>> simplify(LShR(BitVecVal(4, 3), 1))
3810 2
3811 >>> simplify(BitVecVal(2, 3) >> 1)
3812 1
3813 >>> simplify(LShR(BitVecVal(2, 3), 1))
3814 1
3815 """
3816 a, b = _coerce_exprs(self, other)
3817 return BitVecRef(Z3_mk_bvashr(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3818

◆ __rsub__()

def __rsub__ (   self,
  other 
)
Create the Z3 expression `other - self`.

>>> x = BitVec('x', 32)
>>> 10 - x
10 - x

Definition at line 3533 of file z3py.py.

3533 def __rsub__(self, other):
3534 """Create the Z3 expression `other - self`.
3535
3536 >>> x = BitVec('x', 32)
3537 >>> 10 - x
3538 10 - x
3539 """
3540 a, b = _coerce_exprs(self, other)
3541 return BitVecRef(Z3_mk_bvsub(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3542
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.

◆ __rtruediv__()

def __rtruediv__ (   self,
  other 
)
Create the Z3 expression (signed) division `other / self`.

Definition at line 3682 of file z3py.py.

3682 def __rtruediv__(self, other):
3683 """Create the Z3 expression (signed) division `other / self`."""
3684 return self.__rdiv__(other)
3685

◆ __rxor__()

def __rxor__ (   self,
  other 
)
Create the Z3 expression bitwise-xor `other ^ self`.

>>> x = BitVec('x', 32)
>>> 10 ^ x
10 ^ x

Definition at line 3602 of file z3py.py.

3602 def __rxor__(self, other):
3603 """Create the Z3 expression bitwise-xor `other ^ self`.
3604
3605 >>> x = BitVec('x', 32)
3606 >>> 10 ^ x
3607 10 ^ x
3608 """
3609 a, b = _coerce_exprs(self, other)
3610 return BitVecRef(Z3_mk_bvxor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3611
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.

◆ __sub__()

def __sub__ (   self,
  other 
)
Create the Z3 expression `self - other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x - y
x - y
>>> (x - y).sort()
BitVec(32)

Definition at line 3520 of file z3py.py.

3520 def __sub__(self, other):
3521 """Create the Z3 expression `self - other`.
3522
3523 >>> x = BitVec('x', 32)
3524 >>> y = BitVec('y', 32)
3525 >>> x - y
3526 x - y
3527 >>> (x - y).sort()
3528 BitVec(32)
3529 """
3530 a, b = _coerce_exprs(self, other)
3531 return BitVecRef(Z3_mk_bvsub(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3532

◆ __truediv__()

def __truediv__ (   self,
  other 
)
Create the Z3 expression (signed) division `self / other`.

Definition at line 3662 of file z3py.py.

3662 def __truediv__(self, other):
3663 """Create the Z3 expression (signed) division `self / other`."""
3664 return self.__div__(other)
3665

◆ __xor__()

def __xor__ (   self,
  other 
)
Create the Z3 expression bitwise-xor `self ^ other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x ^ y
x ^ y
>>> (x ^ y).sort()
BitVec(32)

Definition at line 3589 of file z3py.py.

3589 def __xor__(self, other):
3590 """Create the Z3 expression bitwise-xor `self ^ other`.
3591
3592 >>> x = BitVec('x', 32)
3593 >>> y = BitVec('y', 32)
3594 >>> x ^ y
3595 x ^ y
3596 >>> (x ^ y).sort()
3597 BitVec(32)
3598 """
3599 a, b = _coerce_exprs(self, other)
3600 return BitVecRef(Z3_mk_bvxor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3601

◆ size()

def size (   self)
Return the number of bits of the bit-vector expression `self`.

>>> x = BitVec('x', 32)
>>> (x + 1).size()
32
>>> Concat(x, x).size()
64

Definition at line 3463 of file z3py.py.

3463 def size(self):
3464 """Return the number of bits of the bit-vector expression `self`.
3465
3466 >>> x = BitVec('x', 32)
3467 >>> (x + 1).size()
3468 32
3469 >>> Concat(x, x).size()
3470 64
3471 """
3472 return self.sort().size()
3473
def Concat(*args)
Definition: z3py.py:4044

Referenced by ParamDescrsRef.__len__(), Goal.__len__(), BitVecNumRef.as_signed_long(), BitVecRef.size(), and BitVecSortRef.subsort().

◆ sort()

def sort (   self)
Return the sort of the bit-vector expression `self`.

>>> x = BitVec('x', 32)
>>> x.sort()
BitVec(32)
>>> x.sort() == BitVecSort(32)
True

Reimplemented from ExprRef.

Definition at line 3452 of file z3py.py.

3452 def sort(self):
3453 """Return the sort of the bit-vector expression `self`.
3454
3455 >>> x = BitVec('x', 32)
3456 >>> x.sort()
3457 BitVec(32)
3458 >>> x.sort() == BitVecSort(32)
3459 True
3460 """
3461 return BitVecSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
3462
def BitVecSort(sz, ctx=None)
Definition: z3py.py:3967
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.

Referenced by BitVecRef.__add__(), BitVecRef.__and__(), BitVecRef.__div__(), QuantifierRef.__getitem__(), BitVecRef.__mod__(), BitVecRef.__mul__(), BitVecRef.__or__(), BitVecRef.__sub__(), BitVecRef.__xor__(), FPNumRef.as_string(), ArrayRef.domain(), FPRef.ebits(), ArithRef.is_int(), ArithRef.is_real(), ArrayRef.range(), FPRef.sbits(), BitVecRef.size(), and ExprRef.sort_kind().