This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 6953
Network Working Group                                            S. Kent
Request for Comments: 2402                                      BBN Corp
Obsoletes: 1826                                              R. Atkinson
Category: Standards Track                                  @Home Network
                                                           November 1998


                        IP Authentication Header

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

Table of Contents

  1. Introduction......................................................2
  2. Authentication Header Format......................................3
     2.1 Next Header...................................................4
     2.2 Payload Length................................................4
     2.3 Reserved......................................................4
     2.4 Security Parameters Index (SPI)...............................4
     2.5 Sequence Number...............................................5
     2.6 Authentication Data ..........................................5
  3. Authentication Header Processing..................................5
     3.1  Authentication Header Location...............................5
     3.2  Authentication Algorithms....................................7
     3.3  Outbound Packet Processing...................................8
        3.3.1  Security Association Lookup.............................8
        3.3.2  Sequence Number Generation..............................8
        3.3.3  Integrity Check Value Calculation.......................9
           3.3.3.1  Handling Mutable Fields............................9
              3.3.3.1.1  ICV Computation for IPv4.....................10
                 3.3.3.1.1.1 Base Header Fields.......................10
                 3.3.3.1.1.2 Options..................................11
              3.3.3.1.2  ICV Computation for IPv6.....................11
                 3.3.3.1.2.1 Base Header Fields.......................11
                 3.3.3.1.2.2 Extension Headers Containing Options.....11
                 3.3.3.1.2.3 Extension Headers Not Containing Options.11
           3.3.3.2  Padding...........................................12
              3.3.3.2.1  Authentication Data Padding..................12

              3.3.3.2.2  Implicit Packet Padding......................12
        3.3.4  Fragmentation..........................................12
     3.4  Inbound Packet Processing...................................13
        3.4.1  Reassembly.............................................13
        3.4.2  Security Association Lookup............................13
        3.4.3  Sequence Number Verification...........................13
        3.4.4  Integrity Check Value Verification.....................15
  4. Auditing.........................................................15
  5. Conformance Requirements.........................................16
  6. Security Considerations..........................................16
  7. Differences from RFC 1826........................................16
  Acknowledgements....................................................17
  Appendix A -- Mutability of IP Options/Extension Headers............18
     A1. IPv4 Options.................................................18
     A2. IPv6 Extension Headers.......................................19
  References..........................................................20
  Disclaimer..........................................................21
  Author Information..................................................22
  Full Copyright Statement............................................22

1.  Introduction

   The IP Authentication Header (AH) is used to provide connectionless
   integrity and data origin authentication for IP datagrams (hereafter
   referred to as just "authentication"), and to provide protection
   against replays.  This latter, optional service may be selected, by
   the receiver, when a Security Association is established. (Although
   the default calls for the sender to increment the Sequence Number
   used for anti-replay, the service is effective only if the receiver
   checks the Sequence Number.)  AH provides authentication for as much
   of the IP header as possible, as well as for upper level protocol
   data.  However, some IP header fields may change in transit and the
   value of these fields, when the packet arrives at the receiver, may
   not be predictable by the sender.  The values of such fields cannot
   be protected by AH.  Thus the protection provided to the IP header by
   AH is somewhat piecemeal.

   AH may be applied alone, in combination with the IP Encapsulating
   Security Payload (ESP) [KA97b], or in a nested fashion through the
   use of tunnel mode (see "Security Architecture for the Internet
   Protocol" [KA97a], hereafter referred to as the Security Architecture
   document).  Security services can be provided between a pair of
   communicating hosts, between a pair of communicating security
   gateways, or between a security gateway and a host.  ESP may be used
   to provide the same security services, and it also provides a
   confidentiality (encryption) service.  The primary difference between
   the authentication provided by ESP and AH is the extent of the
   coverage.  Specifically, ESP does not protect any IP header fields

   unless those fields are encapsulated by ESP (tunnel mode).  For more
   details on how to use AH and ESP in various network environments, see
   the Security Architecture document [KA97a].

   It is assumed that the reader is familiar with the terms and concepts
   described in the Security Architecture document.  In particular, the
   reader should be familiar with the definitions of security services
   offered by AH and ESP, the concept of Security Associations, the ways
   in which AH can be used in conjunction with ESP, and the different
   key management options available for AH and ESP.  (With regard to the
   last topic, the current key management options required for both AH
   and ESP are manual keying and automated keying via IKE [HC98].)

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in RFC 2119 [Bra97].

2.  Authentication Header Format

EID 6953 (Verified) is as follows:

Section: 2. (6)

Original Text:

2.6  Authentication Data

   This is a variable-length field that contains the Integrity Check
   Value (ICV) for this packet.  The field must be an integral multiple
   of 32 bits in length.  The details of the ICV computation are
   described in Section 3.3.2 below.  This field may include explicit
   padding.  This padding is included to ensure that the length of the
   AH header is an integral multiple of 32 bits (IPv4) or 64 bits
   (IPv6).  All implementations MUST support such padding.  Details of
   how to compute the required padding length are provided below.  The
   authentication algorithm specification MUST specify the length of the
   ICV and the comparison rules and processing steps for validation.

Corrected Text:

2.6  Authentication Data

   This is a variable-length field that contains the Integrity Check
   Value (ICV) for this packet.  The field must be an integral multiple
   of 32 bits in length.  The details of the ICV computation are
   described in Section 3.3.3 below.  This field may include explicit
   padding.  This padding is included to ensure that the length of the
   AH header is an integral multiple of 32 bits (IPv4) or 64 bits
   (IPv6).  All implementations MUST support such padding.  Details of
   how to compute the required padding length are provided below.  The
   authentication algorithm specification MUST specify the length of the
   ICV and the comparison rules and processing steps for validation.
Notes:
The section referenced for ICV computation is currently 3.3.2 (Sequence Number Generation). I believe this to be an error, and that 3.3.3 (Integrity Check Value Calculation) was the intended reference.
The protocol header (IPv4, IPv6, or Extension) immediately preceding the AH header will contain the value 51 in its Protocol (IPv4) or Next Header (IPv6, Extension) field [STD-2]. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next Header | Payload Len | RESERVED | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Security Parameters Index (SPI) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number Field | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + Authentication Data (variable) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The following subsections define the fields that comprise the AH format. All the fields described here are mandatory, i.e., they are always present in the AH format and are included in the Integrity Check Value (ICV) computation (see Sections 2.6 and 3.3.3). 2.1 Next Header The Next Header is an 8-bit field that identifies the type of the next payload after the Authentication Header. The value of this field is chosen from the set of IP Protocol Numbers defined in the most recent "Assigned Numbers" [STD-2] RFC from the Internet Assigned Numbers Authority (IANA). 2.2 Payload Length This 8-bit field specifies the length of AH in 32-bit words (4-byte units), minus "2". (All IPv6 extension headers, as per RFC 1883, encode the "Hdr Ext Len" field by first subtracting 1 (64-bit word) from the header length (measured in 64-bit words). AH is an IPv6 extension header. However, since its length is measured in 32-bit words, the "Payload Length" is calculated by subtracting 2 (32 bit words).) In the "standard" case of a 96-bit authentication value plus the 3 32-bit word fixed portion, this length field will be "4". A "null" authentication algorithm may be used only for debugging purposes. Its use would result in a "1" value for this field for IPv4 or a "2" for IPv6, as there would be no corresponding Authentication Data field (see Section 3.3.3.2.1 on "Authentication Data Padding"). 2.3 Reserved This 16-bit field is reserved for future use. It MUST be set to "zero." (Note that the value is included in the Authentication Data calculation, but is otherwise ignored by the recipient.) 2.4 Security Parameters Index (SPI) The SPI is an arbitrary 32-bit value that, in combination with the destination IP address and security protocol (AH), uniquely identifies the Security Association for this datagram. The set of SPI values in the range 1 through 255 are reserved by the Internet Assigned Numbers Authority (IANA) for future use; a reserved SPI value will not normally be assigned by IANA unless the use of the assigned SPI value is specified in an RFC. It is ordinarily selected by the destination system upon establishment of an SA (see the Security Architecture document for more details). The SPI value of zero (0) is reserved for local, implementation- specific use and MUST NOT be sent on the wire. For example, a key management implementation MAY use the zero SPI value to mean "No Security Association Exists" during the period when the IPsec implementation has requested that its key management entity establish a new SA, but the SA has not yet been established. 2.5 Sequence Number This unsigned 32-bit field contains a monotonically increasing counter value (sequence number). It is mandatory and is always present even if the receiver does not elect to enable the anti-replay service for a specific SA. Processing of the Sequence Number field is at the discretion of the receiver, i.e., the sender MUST always transmit this field, but the receiver need not act upon it (see the discussion of Sequence Number Verification in the "Inbound Packet Processing" section below). The sender's counter and the receiver's counter are initialized to 0 when an SA is established. (The first packet sent using a given SA will have a Sequence Number of 1; see Section 3.3.2 for more details on how the Sequence Number is generated.) If anti-replay is enabled (the default), the transmitted Sequence Number must never be allowed to cycle. Thus, the sender's counter and the receiver's counter MUST be reset (by establishing a new SA and thus a new key) prior to the transmission of the 2^32nd packet on an SA. 2.6 Authentication Data This is a variable-length field that contains the Integrity Check Value (ICV) for this packet. The field must be an integral multiple of 32 bits in length. The details of the ICV computation are described in Section 3.3.2 below. This field may include explicit padding. This padding is included to ensure that the length of the AH header is an integral multiple of 32 bits (IPv4) or 64 bits (IPv6). All implementations MUST support such padding. Details of how to compute the required padding length are provided below. The authentication algorithm specification MUST specify the length of the ICV and the comparison rules and processing steps for validation. 3. Authentication Header Processing 3.1 Authentication Header Location Like ESP, AH may be employed in two ways: transport mode or tunnel mode. The former mode is applicable only to host implementations and provides protection for upper layer protocols, in addition to selected IP header fields. (In this mode, note that for "bump-in- the-stack" or "bump-in-the-wire" implementations, as defined in the Security Architecture document, inbound and outbound IP fragments may require an IPsec implementation to perform extra IP reassembly/fragmentation in order to both conform to this specification and provide transparent IPsec support. Special care is required to perform such operations within these implementations when multiple interfaces are in use.) In transport mode, AH is inserted after the IP header and before an upper layer protocol, e.g., TCP, UDP, ICMP, etc. or before any other IPsec headers that have already been inserted. In the context of IPv4, this calls for placing AH after the IP header (and any options that it contains), but before the upper layer protocol. (Note that the term "transport" mode should not be misconstrued as restricting its use to TCP and UDP. For example, an ICMP message MAY be sent using either "transport" mode or "tunnel" mode.) The following diagram illustrates AH transport mode positioning for a typical IPv4 packet, on a "before and after" basis. BEFORE APPLYING AH ---------------------------- IPv4 |orig IP hdr | | | |(any options)| TCP | Data | ---------------------------- AFTER APPLYING AH --------------------------------- IPv4 |orig IP hdr | | | | |(any options)| AH | TCP | Data | --------------------------------- |<------- authenticated ------->| except for mutable fields In the IPv6 context, AH is viewed as an end-to-end payload, and thus should appear after hop-by-hop, routing, and fragmentation extension headers. The destination options extension header(s) could appear either before or after the AH header depending on the semantics desired. The following diagram illustrates AH transport mode positioning for a typical IPv6 packet. BEFORE APPLYING AH --------------------------------------- IPv6 | | ext hdrs | | | | orig IP hdr |if present| TCP | Data | --------------------------------------- AFTER APPLYING AH ------------------------------------------------------------ IPv6 | |hop-by-hop, dest*, | | dest | | | |orig IP hdr |routing, fragment. | AH | opt* | TCP | Data | ------------------------------------------------------------ |<---- authenticated except for mutable fields ----------->| * = if present, could be before AH, after AH, or both ESP and AH headers can be combined in a variety of modes. The IPsec Architecture document describes the combinations of security associations that must be supported. Tunnel mode AH may be employed in either hosts or security gateways (or in so-called "bump-in-the-stack" or "bump-in-the-wire" implementations, as defined in the Security Architecture document). When AH is implemented in a security gateway (to protect transit traffic), tunnel mode must be used. In tunnel mode, the "inner" IP header carries the ultimate source and destination addresses, while an "outer" IP header may contain distinct IP addresses, e.g., addresses of security gateways. In tunnel mode, AH protects the entire inner IP packet, including the entire inner IP header. The position of AH in tunnel mode, relative to the outer IP header, is the same as for AH in transport mode. The following diagram illustrates AH tunnel mode positioning for typical IPv4 and IPv6 packets. ------------------------------------------------ IPv4 | new IP hdr* | | orig IP hdr* | | | |(any options)| AH | (any options) |TCP | Data | ------------------------------------------------ |<- authenticated except for mutable fields -->| | in the new IP hdr | -------------------------------------------------------------- IPv6 | | ext hdrs*| | | ext hdrs*| | | |new IP hdr*|if present| AH |orig IP hdr*|if present|TCP|Data| -------------------------------------------------------------- |<-- authenticated except for mutable fields in new IP hdr ->| * = construction of outer IP hdr/extensions and modification of inner IP hdr/extensions is discussed below. 3.2 Authentication Algorithms The authentication algorithm employed for the ICV computation is specified by the SA. For point-to-point communication, suitable authentication algorithms include keyed Message Authentication Codes (MACs) based on symmetric encryption algorithms (e.g., DES) or on one-way hash functions (e.g., MD5 or SHA-1). For multicast communication, one-way hash algorithms combined with asymmetric signature algorithms are appropriate, though performance and space considerations currently preclude use of such algorithms. The mandatory-to-implement authentication algorithms are described in Section 5 "Conformance Requirements". Other algorithms MAY be supported. 3.3 Outbound Packet Processing In transport mode, the sender inserts the AH header after the IP header and before an upper layer protocol header, as described above. In tunnel mode, the outer and inner IP header/extensions can be inter-related in a variety of ways. The construction of the outer IP header/extensions during the encapsulation process is described in the Security Architecture document. If there is more than one IPsec header/extension required, the order of the application of the security headers MUST be defined by security policy. For simplicity of processing, each IPsec header SHOULD ignore the existence (i.e., not zero the contents or try to predict the contents) of IPsec headers to be applied later. (While a native IP or bump-in-the-stack implementation could predict the contents of later IPsec headers that it applies itself, it won't be possible for it to predict any IPsec headers added by a bump-in-the- wire implementation between the host and the network.) 3.3.1 Security Association Lookup AH is applied to an outbound packet only after an IPsec implementation determines that the packet is associated with an SA that calls for AH processing. The process of determining what, if any, IPsec processing is applied to outbound traffic is described in the Security Architecture document. 3.3.2 Sequence Number Generation The sender's counter is initialized to 0 when an SA is established. The sender increments the Sequence Number for this SA and inserts the new value into the Sequence Number Field. Thus the first packet sent using a given SA will have a Sequence Number of 1. If anti-replay is enabled (the default), the sender checks to ensure that the counter has not cycled before inserting the new value in the Sequence Number field. In other words, the sender MUST NOT send a packet on an SA if doing so would cause the Sequence Number to cycle. An attempt to transmit a packet that would result in Sequence Number overflow is an auditable event. (Note that this approach to Sequence Number management does not require use of modular arithmetic.) The sender assumes anti-replay is enabled as a default, unless otherwise notified by the receiver (see 3.4.3). Thus, if the counter has cycled, the sender will set up a new SA and key (unless the SA was configured with manual key management). If anti-replay is disabled, the sender does not need to monitor or reset the counter, e.g., in the case of manual key management (see Section 5.) However, the sender still increments the counter and when it reaches the maximum value, the counter rolls over back to zero. 3.3.3 Integrity Check Value Calculation The AH ICV is computed over: o IP header fields that are either immutable in transit or that are predictable in value upon arrival at the endpoint for the AH SA o the AH header (Next Header, Payload Len, Reserved, SPI, Sequence Number, and the Authentication Data (which is set to zero for this computation), and explicit padding bytes (if any)) o the upper level protocol data, which is assumed to be immutable in transit 3.3.3.1 Handling Mutable Fields If a field may be modified during transit, the value of the field is set to zero for purposes of the ICV computation. If a field is mutable, but its value at the (IPsec) receiver is predictable, then that value is inserted into the field for purposes of the ICV calculation. The Authentication Data field is also set to zero in preparation for this computation. Note that by replacing each field's value with zero, rather than omitting the field, alignment is preserved for the ICV calculation. Also, the zero-fill approach ensures that the length of the fields that are so handled cannot be changed during transit, even though their contents are not explicitly covered by the ICV. As a new extension header or IPv4 option is created, it will be defined in its own RFC and SHOULD include (in the Security Considerations section) directions for how it should be handled when calculating the AH ICV. If the IP (v4 or v6) implementation encounters an extension header that it does not recognize, it will discard the packet and send an ICMP message. IPsec will never see the packet. If the IPsec implementation encounters an IPv4 option that it does not recognize, it should zero the whole option, using the second byte of the option as the length. IPv6 options (in Destination extension headers or Hop by Hop extension header) contain a flag indicating mutability, which determines appropriate processing for such options. 3.3.3.1.1 ICV Computation for IPv4 3.3.3.1.1.1 Base Header Fields The IPv4 base header fields are classified as follows: Immutable Version Internet Header Length Total Length Identification Protocol (This should be the value for AH.) Source Address Destination Address (without loose or strict source routing) Mutable but predictable Destination Address (with loose or strict source routing) Mutable (zeroed prior to ICV calculation) Type of Service (TOS) Flags Fragment Offset Time to Live (TTL) Header Checksum TOS -- This field is excluded because some routers are known to change the value of this field, even though the IP specification does not consider TOS to be a mutable header field. Flags -- This field is excluded since an intermediate router might set the DF bit, even if the source did not select it. Fragment Offset -- Since AH is applied only to non-fragmented IP packets, the Offset Field must always be zero, and thus it is excluded (even though it is predictable). TTL -- This is changed en-route as a normal course of processing by routers, and thus its value at the receiver is not predictable by the sender. Header Checksum -- This will change if any of these other fields changes, and thus its value upon reception cannot be predicted by the sender. 3.3.3.1.1.2 Options For IPv4 (unlike IPv6), there is no mechanism for tagging options as mutable in transit. Hence the IPv4 options are explicitly listed in Appendix A and classified as immutable, mutable but predictable, or mutable. For IPv4, the entire option is viewed as a unit; so even though the type and length fields within most options are immutable in transit, if an option is classified as mutable, the entire option is zeroed for ICV computation purposes. 3.3.3.1.2 ICV Computation for IPv6 3.3.3.1.2.1 Base Header Fields The IPv6 base header fields are classified as follows: Immutable Version Payload Length Next Header (This should be the value for AH.) Source Address Destination Address (without Routing Extension Header) Mutable but predictable Destination Address (with Routing Extension Header) Mutable (zeroed prior to ICV calculation) Class Flow Label Hop Limit 3.3.3.1.2.2 Extension Headers Containing Options IPv6 options in the Hop-by-Hop and Destination Extension Headers contain a bit that indicates whether the option might change (unpredictably) during transit. For any option for which contents may change en-route, the entire "Option Data" field must be treated as zero-valued octets when computing or verifying the ICV. The Option Type and Opt Data Len are included in the ICV calculation. All options for which the bit indicates immutability are included in the ICV calculation. See the IPv6 specification [DH95] for more information. 3.3.3.1.2.3 Extension Headers Not Containing Options The IPv6 extension headers that do not contain options are explicitly listed in Appendix A and classified as immutable, mutable but predictable, or mutable. 3.3.3.2 Padding 3.3.3.2.1 Authentication Data Padding As mentioned in section 2.6, the Authentication Data field explicitly includes padding to ensure that the AH header is a multiple of 32 bits (IPv4) or 64 bits (IPv6). If padding is required, its length is determined by two factors: - the length of the ICV - the IP protocol version (v4 or v6) For example, if the output of the selected algorithm is 96-bits, no padding is required for either IPv4 or for IPv6. However, if a different length ICV is generated, due to use of a different algorithm, then padding may be required depending on the length and IP protocol version. The content of the padding field is arbitrarily selected by the sender. (The padding is arbitrary, but need not be random to achieve security.) These padding bytes are included in the Authentication Data calculation, counted as part of the Payload Length, and transmitted at the end of the Authentication Data field to enable the receiver to perform the ICV calculation. 3.3.3.2.2 Implicit Packet Padding For some authentication algorithms, the byte string over which the ICV computation is performed must be a multiple of a blocksize specified by the algorithm. If the IP packet length (including AH) does not match the blocksize requirements for the algorithm, implicit padding MUST be appended to the end of the packet, prior to ICV computation. The padding octets MUST have a value of zero. The blocksize (and hence the length of the padding) is specified by the algorithm specification. This padding is not transmitted with the packet. Note that MD5 and SHA-1 are viewed as having a 1-byte blocksize because of their internal padding conventions. 3.3.4 Fragmentation If required, IP fragmentation occurs after AH processing within an IPsec implementation. Thus, transport mode AH is applied only to whole IP datagrams (not to IP fragments). An IP packet to which AH has been applied may itself be fragmented by routers en route, and such fragments must be reassembled prior to AH processing at a receiver. In tunnel mode, AH is applied to an IP packet, the payload of which may be a fragmented IP packet. For example, a security gateway or a "bump-in-the-stack" or "bump-in-the-wire" IPsec implementation (see the Security Architecture document for details) may apply tunnel mode AH to such fragments. 3.4 Inbound Packet Processing If there is more than one IPsec header/extension present, the processing for each one ignores (does not zero, does not use) any IPsec headers applied subsequent to the header being processed. 3.4.1 Reassembly If required, reassembly is performed prior to AH processing. If a packet offered to AH for processing appears to be an IP fragment, i.e., the OFFSET field is non-zero or the MORE FRAGMENTS flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, and (in IPv6) the Flow ID. NOTE: For packet reassembly, the current IPv4 spec does NOT require either the zero'ing of the OFFSET field or the clearing of the MORE FRAGMENTS flag. In order for a reassembled packet to be processed by IPsec (as opposed to discarded as an apparent fragment), the IP code must do these two things after it reassembles a packet. 3.4.2 Security Association Lookup Upon receipt of a packet containing an IP Authentication Header, the receiver determines the appropriate (unidirectional) SA, based on the destination IP address, security protocol (AH), and the SPI. (This process is described in more detail in the Security Architecture document.) The SA indicates whether the Sequence Number field will be checked, specifies the algorithm(s) employed for ICV computation, and indicates the key(s) required to validate the ICV. If no valid Security Association exists for this session (e.g., the receiver has no key), the receiver MUST discard the packet; this is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, and (in IPv6) the Flow ID. 3.4.3 Sequence Number Verification All AH implementations MUST support the anti-replay service, though its use may be enabled or disabled by the receiver on a per-SA basis. (Note that there are no provisions for managing transmitted Sequence Number values among multiple senders directing traffic to a single SA (irrespective of whether the destination address is unicast, broadcast, or multicast). Thus the anti-replay service SHOULD NOT be used in a multi-sender environment that employs a single SA.) If the receiver does not enable anti-replay for an SA, no inbound checks are performed on the Sequence Number. However, from the perspective of the sender, the default is to assume that anti-replay is enabled at the receiver. To avoid having the sender do unnecessary sequence number monitoring and SA setup (see section 3.3.2), if an SA establishment protocol such as IKE is employed, the receiver SHOULD notify the sender, during SA establishment, if the receiver will not provide anti-replay protection. If the receiver has enabled the anti-replay service for this SA, the receiver packet counter for the SA MUST be initialized to zero when the SA is established. For each received packet, the receiver MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number of any other packets received during the life of this SA. This SHOULD be the first AH check applied to a packet after it has been matched to an SA, to speed rejection of duplicate packets. Duplicates are rejected through the use of a sliding receive window. (How the window is implemented is a local matter, but the following text describes the functionality that the implementation must exhibit.) A MINIMUM window size of 32 MUST be supported; but a window size of 64 is preferred and SHOULD be employed as the default. Another window size (larger than the MINIMUM) MAY be chosen by the receiver. (The receiver does NOT notify the sender of the window size.) The "right" edge of the window represents the highest, validated Sequence Number value received on this SA. Packets that contain Sequence Numbers lower than the "left" edge of the window are rejected. Packets falling within the window are checked against a list of received packets within the window. An efficient means for performing this check, based on the use of a bit mask, is described in the Security Architecture document. If the received packet falls within the window and is new, or if the packet is to the right of the window, then the receiver proceeds to ICV verification. If the ICV validation fails, the receiver MUST discard the received IP datagram as invalid; this is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, the Sequence Number, and (in IPv6) the Flow ID. The receive window is updated only if the ICV verification succeeds. DISCUSSION: Note that if the packet is either inside the window and new, or is outside the window on the "right" side, the receiver MUST authenticate the packet before updating the Sequence Number window data. 3.4.4 Integrity Check Value Verification The receiver computes the ICV over the appropriate fields of the packet, using the specified authentication algorithm, and verifies that it is the same as the ICV included in the Authentication Data field of the packet. Details of the computation are provided below. If the computed and received ICV's match, then the datagram is valid, and it is accepted. If the test fails, then the receiver MUST discard the received IP datagram as invalid; this is an auditable event. The audit log entry SHOULD include the SPI value, date/time received, Source Address, Destination Address, and (in IPv6) the Flow ID. DISCUSSION: Begin by saving the ICV value and replacing it (but not any Authentication Data padding) with zero. Zero all other fields that may have been modified during transit. (See section 3.3.3.1 for a discussion of which fields are zeroed before performing the ICV calculation.) Check the overall length of the packet, and if it requires implicit padding based on the requirements of the authentication algorithm, append zero-filled bytes to the end of the packet as required. Perform the ICV computation and compare the result with the saved value, using the comparison rules defined by the algorithm specification. (For example, if a digital signature and one-way hash are used for the ICV computation, the matching process is more complex.) 4. Auditing Not all systems that implement AH will implement auditing. However, if AH is incorporated into a system that supports auditing, then the AH implementation MUST also support auditing and MUST allow a system administrator to enable or disable auditing for AH. For the most part, the granularity of auditing is a local matter. However, several auditable events are identified in this specification and for each of these events a minimum set of information that SHOULD be included in an audit log is defined. Additional information also MAY be included in the audit log for each of these events, and additional events, not explicitly called out in this specification, also MAY result in audit log entries. There is no requirement for the receiver to transmit any message to the purported sender in response to the detection of an auditable event, because of the potential to induce denial of service via such action. 5. Conformance Requirements Implementations that claim conformance or compliance with this specification MUST fully implement the AH syntax and processing described here and MUST comply with all requirements of the Security Architecture document. If the key used to compute an ICV is manually distributed, correct provision of the anti-replay service would require correct maintenance of the counter state at the sender, until the key is replaced, and there likely would be no automated recovery provision if counter overflow were imminent. Thus a compliant implementation SHOULD NOT provide this service in conjunction with SAs that are manually keyed. A compliant AH implementation MUST support the following mandatory-to-implement algorithms: - HMAC with MD5 [MG97a] - HMAC with SHA-1 [MG97b] 6. Security Considerations Security is central to the design of this protocol, and these security considerations permeate the specification. Additional security-relevant aspects of using the IPsec protocol are discussed in the Security Architecture document. 7. Differences from RFC 1826 This specification of AH differs from RFC 1826 [ATK95] in several important respects, but the fundamental features of AH remain intact. One goal of the revision of RFC 1826 was to provide a complete framework for AH, with ancillary RFCs required only for algorithm specification. For example, the anti-replay service is now an integral, mandatory part of AH, not a feature of a transform defined in another RFC. Carriage of a sequence number to support this service is now required at all times. The default algorithms required for interoperability have been changed to HMAC with MD5 or SHA-1 (vs. keyed MD5), for security reasons. The list of IPv4 header fields excluded from the ICV computation has been expanded to include the OFFSET and FLAGS fields. Another motivation for revision was to provide additional detail and clarification of subtle points. This specification provides rationale for exclusion of selected IPv4 header fields from AH coverage and provides examples on positioning of AH in both the IPv4 and v6 contexts. Auditing requirements have been clarified in this version of the specification. Tunnel mode AH was mentioned only in passing in RFC 1826, but now is a mandatory feature of AH. Discussion of interactions with key management and with security labels have been moved to the Security Architecture document. Acknowledgements For over 3 years, this document has evolved through multiple versions and iterations. During this time, many people have contributed significant ideas and energy to the process and the documents themselves. The authors would like to thank Karen Seo for providing extensive help in the review, editing, background research, and coordination for this version of the specification. The authors would also like to thank the members of the IPsec and IPng working groups, with special mention of the efforts of (in alphabetic order): Steve Bellovin, Steve Deering, Francis Dupont, Phil Karn, Frank Kastenholz, Perry Metzger, David Mihelcic, Hilarie Orman, Norman Shulman, William Simpson, and Nina Yuan. Appendix A -- Mutability of IP Options/Extension Headers A1. IPv4 Options This table shows how the IPv4 options are classified with regard to "mutability". Where two references are provided, the second one supercedes the first. This table is based in part on information provided in RFC1700, "ASSIGNED NUMBERS", (October 1994). Opt. Copy Class # Name Reference ---- ----- --- ------------------------ --------- IMMUTABLE -- included in ICV calculation 0 0 0 End of Options List [RFC791] 0 0 1 No Operation [RFC791] 1 0 2 Security [RFC1108(historic but in use)] 1 0 5 Extended Security [RFC1108(historic but in use)] 1 0 6 Commercial Security [expired I-D, now US MIL STD] 1 0 20 Router Alert [RFC2113] 1 0 21 Sender Directed Multi- [RFC1770] Destination Delivery MUTABLE -- zeroed 1 0 3 Loose Source Route [RFC791] 0 2 4 Time Stamp [RFC791] 0 0 7 Record Route [RFC791] 1 0 9 Strict Source Route [RFC791] 0 2 18 Traceroute [RFC1393] EXPERIMENTAL, SUPERCEDED -- zeroed 1 0 8 Stream ID [RFC791, RFC1122 (Host Req)] 0 0 11 MTU Probe [RFC1063, RFC1191 (PMTU)] 0 0 12 MTU Reply [RFC1063, RFC1191 (PMTU)] 1 0 17 Extended Internet Proto [RFC1385, RFC1883 (IPv6)] 0 0 10 Experimental Measurement [ZSu] 1 2 13 Experimental Flow Control [Finn] 1 0 14 Experimental Access Ctl [Estrin] 0 0 15 ??? [VerSteeg] 1 0 16 IMI Traffic Descriptor [Lee] 1 0 19 Address Extension [Ullmann IPv7] NOTE: Use of the Router Alert option is potentially incompatible with use of IPsec. Although the option is immutable, its use implies that each router along a packet's path will "process" the packet and consequently might change the packet. This would happen on a hop by hop basis as the packet goes from router to router. Prior to being processed by the application to which the option contents are directed, e.g., RSVP/IGMP, the packet should encounter AH processing. However, AH processing would require that each router along the path is a member of a multicast-SA defined by the SPI. This might pose problems for packets that are not strictly source routed, and it requires multicast support techniques not currently available. NOTE: Addition or removal of any security labels (BSO, ESO, CIPSO) by systems along a packet's path conflicts with the classification of these IP Options as immutable and is incompatible with the use of IPsec. NOTE: End of Options List options SHOULD be repeated as necessary to ensure that the IP header ends on a 4 byte boundary in order to ensure that there are no unspecified bytes which could be used for a covert channel. A2. IPv6 Extension Headers This table shows how the IPv6 Extension Headers are classified with regard to "mutability". Option/Extension Name Reference ----------------------------------- --------- MUTABLE BUT PREDICTABLE -- included in ICV calculation Routing (Type 0) [RFC1883] BIT INDICATES IF OPTION IS MUTABLE (CHANGES UNPREDICTABLY DURING TRANSIT) Hop by Hop options [RFC1883] Destination options [RFC1883] NOT APPLICABLE Fragmentation [RFC1883] Options -- IPv6 options in the Hop-by-Hop and Destination Extension Headers contain a bit that indicates whether the option might change (unpredictably) during transit. For any option for which contents may change en-route, the entire "Option Data" field must be treated as zero-valued octets when computing or verifying the ICV. The Option Type and Opt Data Len are included in the ICV calculation. All options for which the bit indicates immutability are included in the ICV calculation. See the IPv6 specification [DH95] for more information. Routing (Type 0) -- The IPv6 Routing Header "Type 0" will rearrange the address fields within the packet during transit from source to destination. However, the contents of the packet as it will appear at the receiver are known to the sender and to all intermediate hops. Hence, the IPv6 Routing Header "Type 0" is included in the Authentication Data calculation as mutable but predictable. The sender must order the field so that it appears as it will at the receiver, prior to performing the ICV computation. Fragmentation -- Fragmentation occurs after outbound IPsec processing (section 3.3) and reassembly occurs before inbound IPsec processing (section 3.4). So the Fragmentation Extension Header, if it exists, is not seen by IPsec. Note that on the receive side, the IP implementation could leave a Fragmentation Extension Header in place when it does re-assembly. If this happens, then when AH receives the packet, before doing ICV processing, AH MUST "remove" (or skip over) this header and change the previous header's "Next Header" field to be the "Next Header" field in the Fragmentation Extension Header. Note that on the send side, the IP implementation could give the IPsec code a packet with a Fragmentation Extension Header with Offset of 0 (first fragment) and a More Fragments Flag of 0 (last fragment). If this happens, then before doing ICV processing, AH MUST first "remove" (or skip over) this header and change the previous header's "Next Header" field to be the "Next Header" field in the Fragmentation Extension Header. References [ATK95] Atkinson, R., "The IP Authentication Header", RFC 1826, August 1995. [Bra97] Bradner, S., "Key words for use in RFCs to Indicate Requirement Level", BCP 14, RFC 2119, March 1997. [DH95] Deering, S., and B. Hinden, "Internet Protocol version 6 (IPv6) Specification", RFC 1883, December 1995. [HC98] Harkins, D., and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998. [KA97a] Kent, S., and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998. [KA97b] Kent, S., and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998. [MG97a] Madson, C., and R. Glenn, "The Use of HMAC-MD5-96 within ESP and AH", RFC 2403, November 1998. [MG97b] Madson, C., and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998. [STD-2] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1700, October 1994. See also: http://www.iana.org/numbers.html Disclaimer The views and specification here are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this specification. Author Information Stephen Kent BBN Corporation 70 Fawcett Street Cambridge, MA 02140 USA Phone: +1 (617) 873-3988 EMail: kent@bbn.com Randall Atkinson @Home Network 425 Broadway, Redwood City, CA 94063 USA Phone: +1 (415) 569-5000 EMail: rja@corp.home.net Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.