
Normaliz 3.9.3

Winfried Bruns Max Horn Ulrich von der Ohe

Former Normaliz 3 team members: Tim Römer, Richard Sieg and Christof Söger

Normaliz 2 team member: Bogdan Ichim

https://normaliz.uos.de https://github.com/Normaliz

mailto:normaliz@uos.de

https://hub.docker.com/u/normaliz/dashboard/

https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master

Short reference: NmzShortRef.pdf

Contents

1. Introduction 10
1.1. The objectives of Normaliz . 10
1.2. Platforms, implementation and access from other systems 11
1.3. Major changes relative to version 3.7.0 . 12
1.4. Future extensions . 14
1.5. Download and installation . 14
1.6. Exploring Normaliz online . 14

2. Normaliz by examples 15
2.1. Terminology . 15
2.2. Practical preparations . 16
2.3. A cone in dimension 2 . 17

2.3.1. The Hilbert basis . 18
2.3.2. The cone by inequalities . 20
2.3.3. The interior . 20

1

https://normaliz.uos.de
https://github.com/Normaliz
mailto:normaliz@uos.de
https://hub.docker.com/u/normaliz/dashboard/
https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master

2.4. A lattice polytope . 23
2.4.1. Only the lattice points . 25

2.5. A rational polytope . 26
2.5.1. The series with vertices? . 28
2.5.2. The rational polytope by inequalities 29

2.6. Magic squares . 30
2.6.1. Blocking the grading denominator 33
2.6.2. With even corners . 34
2.6.3. The lattice as input . 36

2.7. Decomposition in a numerical semigroup 37
2.8. A job for the dual algorithm . 38
2.9. A dull polyhedron . 39

2.9.1. Defining it by generators . 41
2.10. The Condorcet paradox . 42

2.10.1. Excluding ties . 43
2.10.2. At least one vote for every preference order 44
2.10.3. The f-vector with codimension bound 45

2.11. Testing normality . 46
2.11.1. Computing just a witness . 46

2.12. Convex hull computation/vertex enumeration 48
2.13. Lattice points in a polytope and its Euclidean volume 49
2.14. The integer hull . 52
2.15. Inhomogeneous congruences . 54

2.15.1. Lattice and offset . 56
2.15.2. Variation of the signs . 56

2.16. Integral closure and Rees algebra of a monomial ideal 57
2.16.1. Only the integral closure of the ideal 58

2.17. Starting from a binomial ideal . 58

3. The input file 60
3.1. Input items . 61

3.1.1. The ambient space and lattice . 61
3.1.2. Plain vectors . 61
3.1.3. Formatted vectors . 62
3.1.4. Plain matrices . 63
3.1.5. Formatted matrices . 64
3.1.6. Constraints in tabular format . 64
3.1.7. Constraints in symbolic format . 65
3.1.8. Polynomials . 65
3.1.9. Rational numbers . 66
3.1.10. Decimal fractions and floating point numbers 66
3.1.11. Numbers in algebraic extensions of Q 66
3.1.12. Computation goals and algorithmic variants 66

2

3.1.13. Comments . 67
3.1.14. Restrictions . 67
3.1.15. Homogeneous and inhomogeneous input 68
3.1.16. Default values . 68
3.1.17. Normaliz takes intersections . 68

3.2. Homogeneous generators . 69
3.2.1. Cones . 69
3.2.2. Lattices . 69

3.3. Homogeneous Constraints . 70
3.3.1. Cones . 70
3.3.2. Lattices . 70

3.4. Inhomogeneous generators . 71
3.4.1. Polyhedra . 71
3.4.2. Affine lattices . 71

3.5. Inhomogeneous constraints . 71
3.5.1. Polyhedra . 71
3.5.2. Affine lattices . 72

3.6. Tabular constraints . 72
3.6.1. Forced homogeneity . 73

3.7. Symbolic constraints . 73
3.8. Relations . 74
3.9. Unit vectors and unit matrix . 74
3.10. Grading . 74

3.10.1. With lattice_ideal input . 75
3.11. Dehomogenization . 75
3.12. Open facets . 76
3.13. Coordinates for projection . 76
3.14. Numerical parameters . 76

3.14.1. Degree bound for series expansion 77
3.14.2. Number of significant coefficients of the quasipolynomial 77
3.14.3. Codimension bound for the face lattice 77
3.14.4. Number of digits for fixed precision 77
3.14.5. Block size for distributed computation 77

3.15. Pointedness . 77
3.16. The zero cone . 77

4. Computation goals and algorithmic variants 78
4.1. Default choices and basic rules . 78
4.2. Computation goals . 79

4.2.1. Lattice data . 79
4.2.2. Support hyperplanes and extreme rays 79
4.2.3. Hilbert basis and lattice points . 79
4.2.4. Enumerative data . 80

3

4.2.5. Combined computation goals . 80
4.2.6. The class group . 80
4.2.7. Integer hull . 80
4.2.8. Triangulation and Stanley decomposition 81
4.2.9. Face structure . 81
4.2.10. Semiopen polyhedra . 82
4.2.11. Automorphism groups . 82
4.2.12. Weighted Ehrhart series and integrals 82
4.2.13. Boolean valued computation goals 82

4.3. Integer type . 83
4.4. The choice of algorithmic variants . 84

4.4.1. Primal vs. dual . 84
4.4.2. Lattice points in polytopes . 84
4.4.3. Bottom decomposition and order . 85
4.4.4. Multiplicity, volume and integrals 85
4.4.5. Symmetrization . 86
4.4.6. Subdivision of simplicial cones . 86
4.4.7. Options for the grading . 86

4.5. Control of computations and communication with interfaces 87
4.6. Rational and integer solutions in the inhomogeneous case 88

5. Running Normaliz 88
5.1. Basic rules . 89
5.2. Info about Normaliz . 90
5.3. Control of execution . 90
5.4. Interruption . 90
5.5. Control of output files . 90
5.6. Ignoring the options in the input file . 91

6. Advanced topics 91
6.1. Computations with a polytope . 91

6.1.1. Lattice normalized and Euclidean volume 92
6.1.2. Developer’s choice: homogeneous input 93

6.2. Lattice points in polytopes once more . 93
6.2.1. Project-and-lift . 94
6.2.2. Project-and-lift with floating point arithmetic 95
6.2.3. LLL reduced coordinates and relaxation 96
6.2.4. The triangulation based primal algorithm 97
6.2.5. Lattice points by approximation . 98
6.2.6. Lattice points by the dual algorithm 98
6.2.7. Counting lattice points . 99

6.3. The bottom decomposition . 99
6.4. Subdivision of large simplicial cones . 100

4

6.5. Primal vs. dual – division of labor . 101
6.6. Various volume versions . 102

6.6.1. The primal volume algorithm . 103
6.6.2. Volume by descent in the face lattice 103
6.6.3. Descent exploiting isomorphism classes of faces 104
6.6.4. Volume by signed decomposition 105
6.6.5. Fixed precision for signed decomposition 108
6.6.6. Comparing the algorithms . 108

6.7. Checking the Gorenstein property . 109
6.8. Symmetrization . 110
6.9. Computations with a polynomial weight . 112

6.9.1. A weighted Ehrhart series . 113
6.9.2. Virtual multiplicity . 115
6.9.3. An integral . 115

6.10. Expansion of the Hilbert or weighted Ehrhart series 116
6.10.1. Series expansion . 116
6.10.2. Counting lattice points by degree 117
6.10.3. Significant coefficients of the quasipolynomial 118

6.11. Explicit dehomogenization . 119
6.12. Projection of cones and polyhedra . 120
6.13. Nonpointed cones . 121

6.13.1. A nonpointed cone . 122
6.13.2. A polyhedron without vertices . 123
6.13.3. Checking pointedness first . 125
6.13.4. Input of a subspace . 125
6.13.5. Data relative to the original monoid 126

6.14. Exporting the triangulation . 127
6.14.1. Nested triangulations . 129
6.14.2. Disjoint decomposition . 129

6.15. Terrific triangulations . 130
6.15.1. Just Triangulation . 131
6.15.2. All generators triangulation . 132
6.15.3. Lattice point triangulation . 132
6.15.4. Unimodular triangulation . 132
6.15.5. Placing triangulation . 133
6.15.6. Pulling triangulation . 133

6.16. Exporting the Stanley decomposition . 134
6.17. Face lattice, f-vector and incidence matrix 135

6.17.1. Dual face lattice, f-vector and incidence matrix 137
6.18. Module generators over the original monoid 138

6.18.1. An inhomogeneous example . 139
6.19. Lattice points in the fundamental parallelepiped 141
6.20. Semiopen polyhedra . 143
6.21. Rational lattices . 145

5

6.22. Automorphism groups . 147
6.22.1. Euclidean automorphisms . 148
6.22.2. Rational automorphisms . 151
6.22.3. Integral automorphisms . 151
6.22.4. Combinatorial automorphisms . 152
6.22.5. Ambient automorphisms . 153
6.22.6. Automorphisms from input . 154

6.23. Precomputed data . 156
6.23.1. Precomputed cones and coordinate transformations 156
6.23.2. An inhomogeneous example . 157
6.23.3. Precomputed Hilbert basis of the recession cone 159

7. Algebraic polyhedra 159
7.1. An example . 159
7.2. Input . 162
7.3. Computations . 162

8. Optional output files 163
8.1. The homogeneous case . 164
8.2. Modifications in the inhomogeneous case 165
8.3. Algebraic polyhedra . 165
8.4. Precomputed data for future input . 165

9. Performance 165
9.1. Parallelization . 165
9.2. Running large computations . 166

10.Distribution and installation 167
10.1. Docker image . 167
10.2. Binary release . 168
10.3. Source package . 169
10.4. Conda . 169
10.5. Cloning the GitHub repository . 169

11.Building Normaliz yourself 170
11.1. Prerequisites . 170

11.1.1. Linux . 170
11.1.2. Mac OS X . 170

11.2. Normaliz at a stroke . 171
11.3. Packages for rational polyhedra . 172

11.3.1. CoCoALib . 172
11.3.2. nauty . 172
11.3.3. Hash libary . 173

6

11.3.4. Flint . 173
11.4. Packages for algebraic polyhedra . 173
11.5. MS Windows . 173

12.Copyright and how to cite 174

A. Mathematical background and terminology 175
A.1. Polyhedra, polytopes and cones . 175
A.2. Cones . 176
A.3. Polyhedra . 176
A.4. Affine monoids . 178
A.5. Affine monoids from binomial ideals . 179
A.6. Lattice points in polyhedra . 179
A.7. Hilbert series and multiplicity . 180
A.8. The class group . 182

B. Annotated console output 183
B.1. Primal mode . 183
B.2. Dual mode . 185

C. Normaliz 2 input syntax 187

D. libnormaliz 188
D.1. The master header file . 188
D.2. Optional packages and configuration . 188
D.3. Integer type as a template parameter . 188

D.3.1. Alternative integer types . 189
D.3.2. Decimal fractions and floating point numbers 189

D.4. Construction of a cone . 189
D.4.1. Construction from an input file . 192

D.5. Setting and changing additional data . 192
D.5.1. Polynomial . 193
D.5.2. Grading . 193
D.5.3. Projection coordinates . 193
D.5.4. Numerical parameters . 193

D.6. Modifying a cone after construction . 194
D.7. Computations in a cone . 195
D.8. Retrieving results . 200

D.8.1. Checking computations . 200
D.8.2. Rank, index and dimension . 201
D.8.3. Support hyperplanes and constraints 201
D.8.4. Extreme rays and vertices . 201
D.8.5. Generators . 202

7

D.8.6. Lattice points in polytopes and elements of degree 1 202
D.8.7. Hilbert basis . 203
D.8.8. Module generators over original monoid 203
D.8.9. Generator of the interior . 203
D.8.10. Grading and dehomogenization . 203
D.8.11. Enumerative data . 204
D.8.12. Weighted Ehrhart series and integrals 205
D.8.13. Triangulation and disjoint decomposition 206
D.8.14. Stanley decomposition . 207
D.8.15. Scaling of axes . 207
D.8.16. Coordinate transformation . 208
D.8.17. Coordinate transformations for precomputed data 209
D.8.18. Automorphism groups . 209
D.8.19. Class group . 211
D.8.20. Face lattice and f-vector . 211
D.8.21. Integer hull . 211
D.8.22. Projection of the cone . 212
D.8.23. Excluded faces . 212
D.8.24. Boolean valued results . 212
D.8.25. Results by type . 213

D.9. Algebraic polyhedra . 214
D.10.Reusing previous computation results . 214
D.11.Control of execution . 215

D.11.1. Exceptions . 215
D.11.2. Interruption . 216
D.11.3. Inner parallelization . 216
D.11.4. Outer parallelization . 216
D.11.5. Control of terminal output . 216
D.11.6. Printing the cone . 217

D.12.A simple program . 217

E. Normaliz interactive: PyNormaliz 222
E.1. Installation . 222
E.2. The high level interface by examples . 222

E.2.1. Creating a cone . 223
E.2.2. Vectors, matrices and numbers . 223
E.2.3. Triangulations, automorphisms and face lattice 225
E.2.4. Hilbert and other series . 227
E.2.5. Multiplicity, volume and integral . 229
E.2.6. Integer hull and other cones as values 230
E.2.7. Boolean values . 230
E.2.8. Algebraic polyhedra . 231
E.2.9. The collective compute command and algorithmic variants 232

8

E.2.10. Miscellaneous functions . 232
E.3. The low level interface . 234

E.3.1. The main functions . 234
E.3.2. Additional input and modification of existing cones 235
E.3.3. Additional data access . 235
E.3.4. Miscellaneous functions . 236
E.3.5. Raw formats of numbers . 237

F. Distributed computation for volume via signed decomposition 237

References 239

Index of keywords 241

9

1. Introduction

1.1. The objectives of Normaliz

The program Normaliz is a tool for computing the Hilbert bases and enumerative data of
rational cones and, more generally, sets of lattice points in rational polyhedra. Moreover,
Normaliz computes algebraic polyhedra, i.e., polyhedra defined over algebraic number fields
embedded into R.

The mathematical background and the terminology of this manual are explained in Appendix A.
For a thorough treatment of the mathematics involved we refer the reader to [7]. The termi-
nology follows [7]. For algorithms of Normaliz see [8], [9], [10], [11], [13], [14], and [15].
Some new developments are briefly explained in this manual.

Both polyhedra and lattices can be given by

(1) systems of generators and/or
(2) constraints.

Since version 3.1, cones need not be pointed and polyhedra need not have vertices, but are
allowed to contain a positive-dimensional affine subspace.

In addition to generators and constraints, affine monoids can be defined by lattice ideals, in
other words, by binomial equations.

In order to describe a rational polyhedron by generators, one specifies a finite set of vertices
x1, . . . ,xn ∈Qd and a set y1, . . . ,ym ∈ Zd generating a rational cone C. The polyhedron defined
by these generators is

P = conv(x1, . . . ,xn)+C, C = R+y1 + · · ·+R+ym.

An affine lattice defined by generators is a subset of Zd given as

L = w+L0, L0 = Zz1 + · · ·+Zzr, w,z1, . . . ,zr ∈ Zd.

Constraints defining a polyhedron are affine-linear inequalities with integral coefficients, and
the constraints for an affine lattice are affine-linear diophantine equations and congruences.
The conversion between generators and constraints is an important task of Normaliz.

The first main goal of Normaliz is to compute a system of generators for

P∩L.

The minimal system of generators of the monoid M =C∩L0 is the Hilbert basis Hilb(M) of
M. The homogeneous case, in which P = C and L = L0, is undoubtedly the most important
one, and in this case Hilb(M) is the system of generators to be computed. In the general case
the system of generators consists of Hilb(M) and finitely many points u1, . . . ,us ∈ P∩L such
that

P∩L =
s⋃

j=1

u j +M.

10

The second main goal are enumerative data that depend on a grading of the ambient lattice.
Normaliz computes the Hilbert series and the Hilbert quasipolynomial of the monoid or set
of lattice points in a polyhedron. In combinatorial terminology: Normaliz computes Ehrhart
series and quasipolynomials of rational polyhedra. Normaliz also computes weighted Ehrhart
series and Lebesgue integrals of polynomials over rational polytopes.

For algebraic polyhedra Normaliz realizes the computation goals above that make sense with-
out the finite generation of the monoid of lattice points in a cone: convex hull and vertex
enumeration for all algebraic polyhedra, and, for polytopes, lattice points, volumes and trian-
gulations.

The computation goals of Normaliz can be set by the user. In particular, they can be restricted
to subtasks, such as the lattice points in a polytope or the leading coefficient of the Hilbert
(quasi)polynomial.

Performance data of Normaliz can be found in [10], [11] and [12].

Acknowledgment. In 2013–2016 the development of Normaliz has been supported by the DFG
SPP 1489 “Algorithmische und experimentelle Methoden in Algebra, Geometrie und Zahlen-
theorie”. From November 2020 to October 2021 Normaliz is supported by the DFG project
“Normaliz: development and long term sustainability”.

1.2. Platforms, implementation and access from other systems

Executables for Normaliz are provided for Mac OS, Linux and MS Windows. If the executa-
bles prepared cannot be run on your system, then you can compile Normaliz yourself (see
Section 11). The statically linked Linux binaries provided by us can be run in the Linux
subsystem of MS Windows 10. A Docker image of Normaliz is available.

Normaliz is written in C++, and should be compilable on every system that has a GCC com-
patible compiler. It uses the standard package GMP (see Section 11). The parallelization is
based on OpenMP. CoCoALib [1] and Flint [23] are optional packages. The computation of
algebraic polytopes is based on e-antic [16], antic [22] and arb [24].

Normaliz consists of two parts: the front end “normaliz” for input and output and the C++
library “libnormaliz” that does the computations.

Normaliz can be accessed from the interactive general purpose system PYTHON via the in-
terface PYNORMALIZ written by Sebastian Gutsche with contributions by Justin Shenk and
Richard Sieg.

Normaliz can also be accessed from the following systems:

• SINGULAR via the library normaliz.lib,
• MACAULAY2 via the package Normaliz.m2,
• COCOA via an external library and libnormaliz,
• GAP via the GAP package NORMALIZINTERFACE [20] which uses libnormaliz,
• POLYMAKE (thanks to the POLYMAKE team),
• SAGEMATH via PyNormaliz.

11

The Singular and Macaulay2 interfaces are contained in the Normaliz distribution. At present,
their functionality is limited to Normaliz 2.10. Nevertheless they profit from newer versions.

Furthermore, Normaliz is used by B. Burton’s system REGINA and in SECDEC by S. Borowka
et al.

Normaliz does not have its own interactive shell. We recommend the access via PyNormaliz,
GAP or SageMath for interactive use. PYNORMALIZ is documented in Appendix E.

1.3. Major changes relative to version 3.7.0

3.7.1 and 3.7.2 are technical releases.

In 3.7.3:

(1) Dynamic handling of cones.
(2) VPATH builds in install scripts.

In 3.7.4:

(1) Bugfix in face lattice computation.
(2) Configuration completely defined in nmz_config.h.

In 3.8.0:

(1) Computation of automorphism groups.
(2) Computation goal Incidence added.
(3) SCIP removed.

3.8.1 fixes a bug in the face lattice computation.

In 3.8.2:

(1) Replacement of boost::dynamic_bitset by own class.
(2) Improvements in the convex hull algorithm.
(3) Further tests.
(4) Improvements of build infrastructure.

3.8.3 is a technical release.

In 3.8.4:

(1) Bug fixes.
(2) Further improvements of the build infrastructure and additional tests.
(3) Extended use of precomputed data.
(4) New package layout for the releases.

In 3.8.5:

(1) Bug fixes.
(2) Improvements in several algorithms.
(3) Substantial improvement in the computation of integer hulls.
(4) Refined triangulations added.

3.8.6 is a technical prerelease.

12

In 3.8.7:

(1) Addition of computation goals IsEmptySemiopen and CoveringFace
(2) Source file structure changed
(3) Improvement in finding preexisting dependencies

In 3.8.8:

(1) Dual versions of face lattice, f-vector and incidence
(2) Rational lattices

In 3.8.9:

(1) ExtremeRaysFloat introduced
(2) TriangulationGenerators replace Generators

(3) Improved stability for interactive use

In 3.8.10:

(1) Management of triangulations and related decompositions completely revised.
(2) Documentation of PyNormaliz added.
(3) SHA256 hash values for certain data.

In 3.9.0:

(1) Volume and integral computation by signed decomposition.
(2) Variant tExploitIsosMult added to volume by descent.
(3) AmbientAutomorphisms and InputAutomorphisms added.
(4) PlacingTriangulations and PullingTriangulation added.
(5) e-antic updated to version 1.0.1.

In 3.9.1:

(1) Better handling of distributed computation.
(2) Python 2 no longer supported.

In 3.9.2:

(1) Compilation for MS Windows under MSYS; MPIR no longer forced under Windows.
(2) Bug fixes and improvements.
(3) Extension of sparse vectors to ranges of indices and unit_matrix as an input type.
(4) Output of an input fie with precomputed data.
(5) libnormaliz function that constructs a cone from an input file.

In 3.9.3:

(1) Bug fixes.
(2) Compilation for MS Windows under MSYS with all optional packages.
(3) Option NoHilbertBasisOutput added.
(4) Short reference for Normaliz added.
(5) normaliz.lib for Singular updated.

See the file CHANGELOG in the Normaliz directory for more information on the history of Nor-
maliz.

13

1.4. Future extensions

(1) Exploitation of automorphism groups,
(2) addition of linear programming methods,
(3) multigraded Hilbert series,
(4) access from further systems,
(5) heterogeneous parallelization,
(6) Gröbner and Graver bases.

1.5. Download and installation

In order to install Normaliz you should have a look at

https://normaliz.uos.de/download/.

It guides you to our GitHub repository

https://github.com/Normaliz/Normaliz/releases.

There you will also find binary releases for Linux, Mac OS and MS Windows. Unzip the
package for your system in a directory of your choice. In it, a directory normaliz-3.9.3

(called Normaliz directory in the following) is created with several subdirectories.

Another source for the executables of all three systems is the package manager Conda. See

https://github.com/conda-forge/normaliz-feedstock

An alternative to the (system dependent) executable is the

Docker image normaliz/normaliz

that is automatically downloaded from the Docker repository if you ask for it. (In the Docker
container, the Normaliz directory is called Normaliz, independently of the version number.)

See Section 10 for more details on the distribution and the Docker image.

A source package is available as well. See Section 11 if you want to compile Normaliz your-
self.

1.6. Exploring Normaliz online

You can explore Normaliz online at

https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master.

14

https://normaliz.uos.de/download/
https://github.com/Normaliz/Normaliz/releases
https://github.com/conda-forge/normaliz-feedstock
https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master

(may take a while.) The button “New” offers you a terminal. Choose it, and you will be in a
Docker container based on the Normaliz Docker image. Your username is norm, and Normaliz
is contained in the subdirectory Normaliz of your home directory. Moreover, it is installed,
and can be invoked by the command normaliz from anywhere. Just type

normaliz -c Normaliz/example/rational

to run a small computation. You van also have a Python shell and run PyNormaliz or study
the tutorial of PyNormaliz (a Jupyter notebook).

It is possible to upload and download files, but please refrain from using Binder as a platform
for heavy computations.

2. Normaliz by examples

2.1. Terminology

For the precise interpretation of parts of the Normaliz output some terminology is necessary,
but this section can be skipped at first reading, and the user can come back to it when it
becomes necessary. We will give less formal descriptions along the way. The following applies
to rational polyhedra. Algebraic polyhedra are discussed in Section 7.

As pointed out in the introduction, Normaliz “computes” intersections P∩ L where P is a
rational polyhedron in Rd and L is an affine sublattice of Zd . It proceeds as follows:

(1) If the input is inhomogeneous, then it is homogenized by introducing a homogenizing
coordinate: the polyhedron P is replaced by the cone C(P): it is the closure of R+(P×
{1}) in Rd+1. Similarly L is replaced by L̃ = Z(L×{1}). In the homogeneous case in
which P is a cone and L is a subgroup of Zd , we set C(P) = P and L̃ = L.

(2) The computations take place in the efficient lattice

E= L̃∩RC(P).

where RC(P) is the linear subspace generated by C(P). The internal coordinates are
chosen with respect to a basis of E. The efficient cone is

C= R+(C(P)∩E).

(3) Inhomogeneous computations are truncated using the dehomogenization (defined im-
plicitly or explicitly).

(4) The final step is the conversion to the original coordinates. Note that we must use the
coordinates of Rd+1 if homogenization has been necessary, simply because some output
vectors may be non-integral otherwise.

Normaliz computes inequalities, equations and congruences defining E and C. The output
contains only those constraints that are really needed. They must always be used jointly: the
equations and congruences define E, and the equations and inequalities define C. Altogether

15

they define the monoid M = C∩E. In the homogeneous case this is the monoid to be com-
puted. In the inhomogeneous case we must intersect M with the dehomogenizing hyperplane
to obtain P∩L.

In this section, only pointed cones (and polyhedra with vertices) will be discussed. Nonpointed
cones will be addressed in Section 6.13.

2.2. Practical preparations

You may find it comfortable to run Normaliz via the GUI jNormaliz [2]. In the Normaliz
directory open jNormaliz by clicking jNormaliz.jar in the appropriate way. (We assume that
Java is installed on your machine.) In the jNormaliz file dialogue choose one of the input files

Figure 1: jNormaliz

in the subdirectory example, say small.in, and press Run. In the console window you can
watch Normaliz at work. Finally inspect the output window for the results.

The menus and dialogues of jNormaliz are self explanatory, but you can also consult the
documentation [2] via the help menu.

Remark The jNormaliz drop down menus do presently not cover all options of Normaliz. But
since all computation goals and algorithmic variants can be set in the input file, there is no
real restriction in using jNormaliz. The only option not reachable by jNormaliz is the output
directory (see Section 5.5).

Moreover, one can, and often will, run Normaliz from the command line. This is fully ex-
plained in Section 5. At this point it is enough to call Normaliz by typing

normaliz -c <project>

where <project> denotes for the project to be computed. Normaliz will load the file <project>.in.
The option -c makes Normaliz to write a progress report on the terminal. Normaliz writes its
results to <project>.out.

16

Note that you may have to prefix normaliz by a path name, and <project> must contain a
path to the input file if it is not in the current directory. Suppose the Normaliz directory is the
current directory and we are using a Linux or Mac system. Then

./normaliz -c example/small

will run small.in from the directory example. On Windows we must change this to

.\normaliz -c example\small

The commands given above will run Normaliz with the at most 8 parallel threads. For the very
small examples in this tutorial you may want to add -x=1 to suppress parallelization. For large
examples, you can increase the number of parallel threads by -x=<N> where <N> is the number
of threads that you want to suggest. See Section 5.3.

As long as you don’t specify a computation goal on the command line or in the input file,
Normaliz will use the default computation goals:

HilbertBasis

HilbertSeries

ClassGroup

The computation of the Hilbert series requires the explicit or implicit definition of a grading.
Normaliz does only complain that a computation goal cannot be reached if the goal has been
set explicitly. For example, if you say HilbertSeries and there is no grading, an exception
will be thrown and Normaliz terminates, but an output file with the already computed data will
be written.

Note that the spacing in the output files may have changed over time and that not all these
changes may have made their way into this manual.

Normaliz will always print the results that are obtained on the way to the computation goals
and do not require extra effort.

Appendix B helps you to read the console output that you have demanded by the option -c.

2.3. A cone in dimension 2

We want to investigate the cone C = R+(2,1)+R+(1,3)⊂ R2:

0

17

This cone is defined in the input file 2cone.in:

amb_space 2

cone 2

1 3

2 1

The input tells Normaliz that the ambient space is R2, and then a cone with 2 generators is
defined, namely the cone C from above.

The figure indicates the Hilbert basis, and this is our first computation goal.

If you prefer to consider the columns of a matrix as input vectors (or have a matrix in this
format from another system) you can use the input

amb_space 2

cone transpose 2

1 2

3 1

Note that the number 2 following transpose is now the number of columns. Later on we will
also show the use of formatted matrices.

2.3.1. The Hilbert basis

In order to compute the Hilbert basis, we run Normaliz from jNormaliz or by

./normaliz -c example/2cone

and inspect the output file:

4 Hilbert basis elements

2 extreme rays

2 support hyperplanes

Self explanatory so far.

embedding dimension = 2

rank = 2 (maximal)

external index = 1

internal index = 5

original monoid is not integrally closed in chosen lattice

The embedding dimension is the dimension of the space in which the computation is done.
The rank is the rank of the lattice E (notation as in Section 2.1). In fact, in our example E=Z2,
and therefore has rank 2.

For subgroups G⊂U ⊂ Zd we denote the order of the torsion subgroup of U/G by the index
of G in U . The external index is the index of the lattice E in Zd . In our case E = Zd , and
therefore the external index is 1. Note: the external index is 1 exactly when E is a direct

18

summand of Zd .

For this example and many others the original monoid is well defined: the generators of the
cone used as input are contained in E. (This need not be the case if E is a proper sublattice of
Zd , and we let the original monoid be undefined in inhomogeneous computations.) Let G be
the subgroup generated by the original monoid. The internal index is the index of G in E.

The original monoid is integrally closed if and only if the it contains the Hilbert basis, and this
is evidently false for our example. We go on.

size of triangulation = 1

resulting sum of |det|s = 5

The primal algorithm of Normaliz relies on a (partial) triangulation. In our case the triangula-
tion consists of a single simplicial cone, and (the absolute value of) its determinant is 5.

No implicit grading found

If you do not define a grading explicitly, Normaliz tries to find one itself: the grading is defined
if and only if there is a linear form γ on E under which all extreme rays of the efficient cone
C have value 1, and if so, γ is the implicit grading. Such does not exist in our case.

The last information before we come to the vector lists:
rank of class group = 0

finite cyclic summands:

5: 1

The class group of the monoid M has rank 0, in other words, it is finite. It has one finite cyclic
summand of order 5.

This is the first instance of a multiset of integers displayed as a sequence of pairs

<n>: <m>

Such an entry says: the multiset contains the number <n> with multiplicity <m>.

Now we look at the vector lists (typeset in two columns to save space):

4 Hilbert basis elements: 2 extreme rays:

1 1 1 3

1 2 2 1

1 3

2 1 2 support hyperplanes:

-1 2

3 -1

The support hyperplanes are given by the linear forms (or inner normal vectors):

−x1 +2x2 ≥ 0,
3x1− x2 ≥ 0.

If the order is not fixed for some reason, Normaliz sorts vector lists as follows: (1) by degree

19

if a grading exists and the application makes sense, (2) lexicographically.

2.3.2. The cone by inequalities

Instead by generators, we can define the cone by the inequalities just computed (2cone_ineq.in).
We use this example to show the input of a formatted matrix:

amb_space auto

inequalities

[[-1 2] [3 -1]]

A matrix of input type inequalities contains homogeneous inequalities. Normaliz can deter-
mine the dimension of the ambient space from the formatted matrix. Therefore we can declare
the ambient space as being “auto determined” (but amb_space 2 is not forbidden).

We get the same result as with 2cone.in except that the data depending on the original monoid
cannot be computed: the internal index and the information on the original monoid are missing
since there is no original monoid.

2.3.3. The interior

Now we want to compute the lattice points in the interior of our cone. If the cone C is given
by the inequalities λi(x) ≥ 0 (within aff(C)), then the interior is given by the inequalities
λi(x)> 0. Since we are interested in lattice points, we work with the inequalities λi(x)≥ 1.

The input file 2cone_int.in says

amb_space 2

strict_inequalities 2

-1 2

3 -1

The strict inequalities encode the conditions

−x1 +2x2 ≥ 1,
3x1− x2 ≥ 1.

This is our first example of inhomogeneous input.

Note that the strict inequalities do not define the interior of the cone as a point set. They define
a (closed) polyhedron with the same lattice points as the interior.

20

0

Alternatively we could use the following two equivalent input files, in a more intuitive nota-
tion:

amb_space 2

constraints 2

-1 2 > 0

3 -1 > 0

amb_space 2

constraints 2

-1 2 >= 1

3 -1 >= 1

There is an even more intuitive way to type the input file using symbolic constraints that we
will introduce in Section 2.6.2.

Normaliz homogenizes inhomogeneous computations by introducing an auxiliary homogeniz-
ing coordinate xd+1. The polyhedron is obtained by intersecting the homogenized cone with
the hyperplane xd+1 = 1. The recession cone is the intersection with the hyperplane xd+1 = 0.
The recession monoid is the monoid of lattice points in the recession cone, and the set of lattice
points in the polyhedron is represented by its system of module generators over the recession
monoid.

Note that the homogenizing coordinate serves as the denominator for rational vectors. In our
example the recession cone is our old friend that we have already computed, and therefore we
need not comment on it.

2 module generators

4 Hilbert basis elements of recession monoid

1 vertices of polyhedron

2 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2

21

The only surprise may be the embedding dimension: Normaliz always takes the dimension
of the space in which the computation is done. It is the number of components of the output
vectors. Because of the homogenization it has increased by 1.

size of triangulation = 1

resulting sum of |det|s = 25

In this case the homogenized cone has stayed simplicial, but the determinant has changed.

dehomogenization:

0 0 1

The dehomogenization is the linear form δ on the homogenized space that defines the hyper-
planes from which we get the polyhedron and the recession cone by the equations δ (x) = 1
and δ (x) = 0, respectively. It is listed since one can also work with a user defined dehomoge-
nization.

module rank = 1

This is the rank of the module of lattice points in the polyhedron over the recession monoid.
In our case the module is an ideal, and so the rank is 1.

The output of inhomogeneous computations is always given in homogenized form. The last
coordinate is the value of the dehomogenization on the listed vectors, 1 on the module gener-
ators, 0 on the vectors in the recession monoid:

2 module generators: 4 Hilbert basis elements of recession monoid:

1 1 1 1 1 0

1 2 1 1 2 0

1 3 0

2 1 0

The module generators are (1,1) and (1,2).

1 vertices of polyhedron:

3 4 5

Indeed, the polyhedron has a single vertex, namely (3/5,4/5).

2 extreme rays of recession cone: 3 support hyperplanes of polyhedron (homogenized):

1 3 0 -1 2 -1

2 1 0 0 0 1

3 -1 -1

Two support hyperplanes are exactly those that we have used to define the polyhedron – and
it has only 2. But Normaliz always outputs the support hyperplanes that are needed for the
cone that one obtains by homogenizing the polyhedron, as indicated by “homogenized”. The
homogenizing variable is always ≥ 0. In this case the support hyperplane (0,0,1) is essential
for the description of the cone. Note that it need not always appear.

22

2.4. A lattice polytope

The file polytope.in contains

amb_space 4

polytope 4

0 0 0

2 0 0

0 3 0

0 0 5

This is a good place to mention that Normaliz also accepts matrices (and vectors) in sparse
format:

amb_space 4

polytope 4 sparse

;

1:2;

2:3;

3:5;

Each input row, concluded by ;, lists the indices and the corresponding nonzero values in that
row of the matrix.

The Ehrhart monoid of the integral polytope with the 4 vertices

(0,0,0) , (2,0,0) , (0,3,0) and (0,0,5)

in R3 is to be computed. The generators of the Ehrhart monoid are obtained by attaching a
further coordinate 1 to the vertices, and this explains amb_space 4. In fact, the input type
polytope is not only a convenient version of

cone 4

0 0 0 1

2 0 0 1

0 3 0 1

0 0 5 1

It also sets the he grading to be the last coordinate. See 3.10 below for general information on
gradings.

Running normaliz produces the file polytope.out:

19 Hilbert basis elements

18 lattice points in polytope (Hilbert basis elements of degree 1)

4 extreme rays

4 support hyperplanes

embedding dimension = 4

rank = 4 (maximal)

23

external index = 1

internal index = 30

original monoid is not integrally closed in chosen lattice

Perhaps a surprise: the lattice points of the polytope do not yield all Hilbert basis elements.

size of triangulation = 1

resulting sum of |det|s = 30

Nothing really new so far. The grading appears in the output file:

grading:

0 0 0 1

degrees of extreme rays:

1: 4

Again we encounter the notation <n>: <m>: we have 4 extreme rays, all of degree 1.

Hilbert basis elements are not of degree 1

We knew this already: the polytope is not integrally closed as defined in [7]. Now we see the
enumerative data defined by the grading:

multiplicity = 30

Hilbert series:

1 14 15

denominator with 4 factors:

1: 4

degree of Hilbert Series as rational function = -2

Hilbert polynomial:

1 4 8 5

with common denominator = 1

The polytope has Z3-normalized volume 30 as indicated by the multiplicity (see Section 6.1.1
for a discussion of volumes and multiplicities). The Hilbert (or Ehrhart) function counts the
lattice points in kP, k ∈Z+. The corresponding generating function is a rational function H(t).
For our polytope it is

1+14t +15t2

(1− t)4 .

The denominator is given in multiset notation: 1: 4 say that the factor (1− t1) occurs with
multiplicity 4.

The Ehrhart polynomial (again we use a more general term in the output file) of the polytope
is

p(k) = 1+4k+8k2 +5k3 .

24

In our case it has integral coefficients, a rare exception. Therefore one usually needs a denom-
inator.

Everything that follows has already been explained.

rank of class group = 0

finite cyclic summands:

30: 1

18 lattice points in polytope (Hilbert basis elements of degree 1):

0 0 0 1

...

2 0 0 1

1 further Hilbert basis elements of higher degree:

1 2 4 2

4 extreme rays: 4 support hyperplanes:

0 0 0 1 -15 -10 -6 30

0 0 5 1 0 0 1 0

0 3 0 1 0 1 0 0

2 0 0 1 1 0 0 0

The support hyperplanes give us a description of the polytope by inequalities: it is the solution
of the system of the 4 inequalities

x3 ≥ 0 , x2 ≥ 0 , x1 ≥ 0 and 15x1 +10x2 +6x3 ≤ 30 .

2.4.1. Only the lattice points

Suppose we want to compute only the lattice points in our polytope. In the language of
graded monoids these are the degree 1 elements, and so we add Deg1Elements to our input file
(polytope_deg1.in):

amb_space 4

polytope 4

0 0 0

2 0 0

0 3 0

0 0 5

Deg1Elements

/* This is our first explicit computation goal*/

We have used this opportunity to include a comment in the input file. The computation of
lattice points in a polytope will be taken up again in Sections 2.13 and 6.2.

25

We lose all information on the Hilbert series, and from the Hilbert basis we only retain the
degree 1 elements.

2.5. A rational polytope

The type polytope can (now) be used for rational polytopes as well.

We want to investigate the Ehrhart series of the triangle P with vertices

(1/2,1/2), (−1/3,−1/3), (1/4,−1/2).

For this example the procedure above yields the input file rational.in:

amb_space 3

polytope 3

1/2 1/2

-1/3 -1/3

1/4 -1/2

HilbertSeries

From the output file we only list the data of the Ehrhart series.

multiplicity = 5/8

multiplicity (float) = 0.625

Hilbert series:

1 0 0 3 2 -1 2 2 1 1 1 1 2

denominator with 3 factors:

1: 1 2: 1 12: 1

degree of Hilbert Series as rational function = -3

Hilbert series with cyclotomic denominator:

-1 -1 -1 -3 -4 -3 -2

cyclotomic denominator:

1: 3 2: 2 3: 1 4: 1

Hilbert quasi-polynomial of period 12:

26

0: 48 28 15 7: 23 22 15

1: 11 22 15 8: 16 28 15

2: -20 28 15 9: 27 22 15

3: 39 22 15 10: -4 28 15

4: 32 28 15 11: 7 22 15

5: -5 22 15 with common denominator = 48

6: 12 28 15

The multiplicity is a rational number. Since in dimension 2 the normalized area (of full-
dimensional polytopes) is twice the Euclidean area, we see that P has Euclidean area 5/16.
If the multiplicity is not integral, we also print it in floating point format, This is certainly
superfluous for a fraction like 5/8, but very handy if the numerator and the denominator have
many digits.

Unlike in the case of a lattice polytope, there is no canonical choice of the denominator of the
Ehrhart series. Normaliz gives it in 2 forms. In the first form the numerator polynomial is

1+3t3 +2t4− t5 +2t6 +2t7 + t8 + t9 + t10 + t11 +2t12

and the denominator is
(1− t)(1− t2)(1− t12).

As a rational function, H(t) has degree −3. This implies that 3P is the smallest integral
multiple of P that contains a lattice point in its interior.

Normaliz gives also a representation as a quotient of coprime polynomials with the denomi-
nator factored into cyclotomic polynomials. In this case we have

H(t) =−1+ t + t2 + t3 +4t4 +3t5 +2t6

ζ 3
1 ζ 2

2 ζ3ζ4

where ζi is the i-th cyclotomic polynomial (ζ1 = t−1, ζ2 = t +1, ζ3 = t2+ t +1, ζ4 = t2+1).

Normaliz transforms the representation with cyclotomic denominator into one with denomi-
nator of type (1− te1) · · ·(1− ter), r = rank, by choosing er as the least common multiple of
all the orders of the cyclotomic polynomials appearing, er−1 as the lcm of those orders that
have multiplicity ≥ 2 etc.

There are other ways to form a suitable denominator with 3 factors 1− te, for example g(t) =
(1− t2)(1− t3)(1− t4) = −ζ 3

1 ζ 2
2 ζ3ζ4. Of course, g(t) is the optimal choice in this case.

However, P is a simplex, and in general such optimal choice may not exist. We will explain
the reason for our standardization below.

Let p(k) be the number of lattice points in kP. Then p(k) is a quasipolynomial:

p(k) = p0(k)+ p1(k)k+ · · ·+ pr−1(k)kr−1,

where the coefficients depend on k, but only to the extent that they are periodic of a certain
period π ∈ N. In our case π = 12 (the lcm of the orders of the cyclotomic polynomials).

27

The table giving the quasipolynomial is to be read as follows: The first column denotes the
residue class j modulo the period and the corresponding line lists the coefficients pi(j) in
ascending order of i, multiplied by the common denominator. So

p(k) = 1+
7
12

k+
5

16
k2, k ≡ 0 (12),

etc. The leading coefficient is the same for all residue classes and equals the Euclidean volume
(in this case).

Our choice of denominator for the Hilbert series is motivated by the following fact: ei is the
common period of the coefficients pr−i, . . . , pr−1. The user should prove this fact or at least
verify it by several examples.

Especially in the case of a simplex the representation of the Hilbert series shown so far may
not be the expected one. In fact, there is a representation in which the exponents of t in the
denominator are the degrees of the integral extreme generators. So one would expect the
denominator to be (1− t2)(1− t3)(1− t4) in our case. The generalization to the nonsimplicial
case uses the degrees of a homogeneous system of parameters (see [7, p. 200]). Normaliz can
compute such a denominator if the computation goal HSOP is set (rationalHSOP.in):

Hilbert series (HSOP):

1 1 1 3 4 3 2

denominator with 3 factors:

2: 1 3: 1 4: 1

Note that the degrees of the elements in a homogeneous system of parameters are by no means
unique and that there is no optimal choice in general. To find a suitable sequence of degrees
Normaliz must compute the face lattice of the cone to some extent. Therefore be careful not
to ask for HSOP if the cone has many support hyperplanes.

2.5.1. The series with vertices?

It is tempting to define the polytope by the input type vertices. This choice makes the com-
putation inhomogeneous, a mode that is mainly meant for (potentially) unbounded polyhedra.
But it can be used for polytopes as well, and with this input type you can compute all of the data
that we have seen above. You must ask for the EhrhartSeries instead of the HilbertSeries.
The file rational_inhom.in is

amb_space 2

vertices 3

1/2 1/2 1

-1/3 -1/3 1

1/4 -1/2 1

EhrhartSeries

Nevertheless, there is also use for HilbertSeries in the inhomogeneous case. But then the
grading must be defined on the affine space of the polytope (and not on the cone over the
polytope). See Sections 6.1 and 6.10.2.

28

2.5.2. The rational polytope by inequalities

We extract the support hyperplanes of our polytope from the output file and use them as input
(poly_ineq.in):

amb_space 3

inequalities 3

-8 2 3

1 -1 0

2 7 3

grading

unit_vector 3

HilbertSeries

At this point we have to help Normaliz because it has no way to guess that we want to inves-
tigate the polytope defined by the inequalities and the choice x3 = 1. This is achieved by the
specification of the grading that maps every vector to its third coordinate.

This is the first time that we used the shortcut unit_vector <n> which represents the n-th unit
vector en ∈ Rd and is only allowed for input types which require a single vector.

These data tell us that the polytope, as a subset of R2, is defined by the inequalities

−8x1 +2x2 +3≥ 0,
x1− x2 +0≥ 0,

2x1 +7x2 +3≥ 0.

These inequalities are inhomogeneous, but we are using the homogeneous input type inequalities
which amounts to introducing the grading variable x3 as explained above.

The inequalities as written above look somewhat artificial. It is certainly more natural to write
them in the form

8x1−2x2 ≤ 3,
x1− x2 ≥ 0,

2x1 +7x2 ≥−3.

and for the direct transformation into Normaliz input we have introduced the type hom_constraints.
The prefix hom indicates that we want homogeneous inequalities whereas plain constraints

that we have already seen in Section 2.3.3 gives inhomogeneous inequalities. The file poly_hom_const.in
contains

amb_space 3

hom_constraints 3

8 -2 <= 3

1 -1 >= 0

2 7 >= -3

grading

unit_vector 3

HilbertSeries

29

You can of course also switch to inhomogeneous input using inhom_inequalities or constraints
in the same way as polytope can be replaced by vertices.

2.6. Magic squares

Suppose that you are interested in the following type of “square”

x1 x2 x3
x4 x5 x6
x7 x8 x9

and the problem is to find nonnegative values for x1, . . . ,x9 such that the 3 numbers in all rows,
all columns, and both diagonals sum to the same constant M . Sometimes such squares are
called magic and M is the magic constant. This leads to a linear system of equations

x1 + x2 + x3 = x4 + x5 + x6;
x1 + x2 + x3 = x7 + x8 + x9;
x1 + x2 + x3 = x1 + x4 + x7;
x1 + x2 + x3 = x2 + x5 + x8;
x1 + x2 + x3 = x3 + x6 + x9;
x1 + x2 + x3 = x1 + x5 + x9;
x1 + x2 + x3 = x3 + x5 + x7.

This system is encoded in the file 3x3magic.in:

amb_space 9

equations 7

1 1 1 -1 -1 -1 0 0 0

1 1 1 0 0 0 -1 -1 -1

0 1 1 -1 0 0 -1 0 0

1 0 1 0 -1 0 0 -1 0

1 1 0 0 0 -1 0 0 -1

0 1 1 0 -1 0 0 0 -1

1 1 0 0 -1 0 -1 0 0

grading

sparse 1:1 2:1 3:1;

The input type equations represents homogeneous equations. The first equation reads

x1 + x2 + x3− x4− x5− x6 = 0,

and the other equations are to be interpreted analogously. The magic constant is a natural
choice for the grading. It is given in sparse form, equivalent to the dense form

30

grading

1 1 1 0 0 0 0 0 0

It seems that we have forgotten to define the cone. This may indeed be the case, but doesn’t
matter: if there is no input type that defines a cone, Normaliz chooses the positive orthant, and
this is exactly what we want in this case.

The output file contains the following:

5 Hilbert basis elements

5 lattice points in polytope (Hilbert basis elements of degree 1)

4 extreme rays

4 support hyperplanes

embedding dimension = 9

rank = 3

external index = 1

size of triangulation = 2

resulting sum of |det|s = 4

grading:

1 1 1 0 0 0 0 0 0

with denominator = 3

The input degree is the magic constant. However, as the denominator 3 shows, the magic
constant is always divisible by 3, and therefore the effective degree is M /3. This degree is
used for the multiplicity, the Hilbert series, and the Hilbert basis elements of degree 1, and
other date depending on the degree.

By introducing the grading denominator, Normaliz has changed the grading defined by you,
and you may not like this. There is a way out: add the option NoGradingDenom. We will
discuss the consequences below.

degrees of extreme rays:

1: 4

Hilbert basis elements are of degree 1

This was not to be expected (and is no longer true for 4×4 squares).

multiplicity = 4

Hilbert series:

1 2 1

denominator with 3 factors:

1: 3

31

degree of Hilbert Series as rational function = -1

Hilbert polynomial:

1 2 2

with common denominator = 1

The Hilbert series is
1+2t + t2

(1− t)3 .

The Hilbert polynomial is
P(k) = 1+2k+2k2,

and after substituting M /3 for k we obtain the number of magic squares of magic constant
M , provided 3 divides M . (If 3 - M , there is no magic square of magic constant M .)

rank of class group = 1

finite cyclic summands:

2: 2

So the class group is Z⊕ (Z/2Z)2.

5 lattice points in polytope (Hilbert basis elements of degree 1):

0 2 1 2 1 0 1 0 2

1 0 2 2 1 0 0 2 1

1 1 1 1 1 1 1 1 1

1 2 0 0 1 2 2 0 1

2 0 1 0 1 2 1 2 0

0 further Hilbert basis elements of higher degree:

The 5 elements of the Hilbert basis represent the magic squares

2 0 1
0 1 2
1 2 0

1 0 2
2 1 0
0 2 1

1 1 1
1 1 1
1 1 1

1 2 0
0 1 2
2 0 1

0 2 1
2 1 0
1 0 2

All other solutions are linear combinations of these squares with nonnegative integer coeffi-
cients. One of these 5 squares is clearly in the interior:

4 extreme rays: 4 support hyperplanes:

0 2 1 2 1 0 1 0 2 -2 -1 0 0 4 0 0 0 0

1 0 2 2 1 0 0 2 1 0 -1 0 0 2 0 0 0 0

1 2 0 0 1 2 2 0 1 0 1 0 0 0 0 0 0 0

2 0 1 0 1 2 1 2 0 2 1 0 0 -2 0 0 0 0

These 4 support hyperplanes cut out the cone generated by the magic squares from the linear
subspace they generate. Only one is reproduced as a sign inequality. This is due to the fact that
the linear subspace has submaximal dimension and there is no unique lifting of linear forms
to the full space.

32

6 equations: 3 basis elements of generated lattice:

1 0 0 0 0 1 -2 -1 1 1 0 -1 -2 0 2 1 0 -1

0 1 0 0 0 1 -2 0 0 0 1 -1 -1 0 1 1 -1 0

0 0 1 0 0 1 -1 -1 0 0 0 3 4 1 -2 -1 2 2

0 0 0 1 0 -1 2 0 -2

0 0 0 0 1 -1 1 0 -1

0 0 0 0 0 3 -4 -1 2

So one of our equations has turned out to be superfluous (why?). Note that also the equations
are not reproduced exactly. Finally, Normaliz lists a basis of the efficient lattice E generated
by the magic squares.

Note that the equations and the lattice basis are not uniquely determined. We transform their
matrices into reduced row echelon form to force unique output files.

2.6.1. Blocking the grading denominator

As mentioned above, one can block the grading denominator and force Normaliz to use the
input grading. For the magic squares we augment the input file as follows (3x3magicNGD.in):

amb_space 9

equations 7

1 1 1 -1 -1 -1 0 0 0

...

1 1 0 0 -1 0 -1 0 0

grading

sparse 1:1 2:1 3:1;

NoGradingDenom

The consequences:

grading:

1 1 1 0 0 0 0 0 0

degrees of extreme rays:

3: 4

multiplicity = 4/9

multiplicity (float) = 0.444444444444

Hilbert series:

1 0 0 2 0 0 1

denominator with 3 factors:

3: 3

degree of Hilbert Series as rational function = -3

33

The numerator of the Hilbert series is symmetric.

Hilbert series with cyclotomic denominator:

-1 0 0 -2 0 0 -1

cyclotomic denominator:

1: 3 3: 3

Hilbert quasi-polynomial of period 3:

0: 9 6 2

1: 0 0 0

2: 0 0 0

with common denominator = 9

rank of class group = 1

finite cyclic summands:

2: 2

0 lattice points in polytope (Hilbert basis elements of degree 1):

It is easy to relate the data with the grading denominator to those without. You must decide
yourself what you prefer. One aspect is whether one prefers intrinsic data (with grading de-
nominator) to extrinsic ones that depend on the embedding (without the grading denominator).
We will discuss the topic again in Section 6.1.

2.6.2. With even corners

We change our definition of magic square by requiring that the entries in the 4 corners are all
even. Then we have to augment the input file by the following (3x3magiceven.in):

congruences 4 sparse

1:1 10:2;

3:1 10:2;

7:1 10:2;

9:1 10:2;

This sparse form is equivalent to the dense form

congruences 4

1 0 0 0 0 0 0 0 0 2

0 0 1 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 2

0 0 0 0 0 0 0 0 1 2

34

The first 9 entries in each row represent the coefficients of the coordinates in the homogeneous
congruences, and the last is the modulus:

x1 ≡ 0 mod 2

is the first congruence etc.

We could also define these congruences as symbolic constraints:

constraints 4 symbolic

x[1] ~ 0(2);

x[3] ~ 0(2);

x[7] ~ 0(2);

x[9] ~ 0(2);

The output changes accordingly:

9 Hilbert basis elements

0 lattice points in polytope (Hilbert basis elements of degree 1)

4 extreme rays

4 support hyperplanes

embedding dimension = 9

rank = 3

external index = 4

size of triangulation = 2

resulting sum of |det|s = 8

grading:

1 1 1 0 0 0 0 0 0

with denominator = 3

degrees of extreme rays:

2: 4

multiplicity = 1

Hilbert series:

1 -1 3 1

denominator with 3 factors:

1: 1 2: 2

degree of Hilbert Series as rational function = -2

Hilbert series with cyclotomic denominator:

-1 1 -3 -1

cyclotomic denominator:

1: 3 2: 2

35

Hilbert quasi-polynomial of period 2:

0: 2 2 1

1: -1 0 1

with common denominator = 2

After the extensive discussion in Section 2.5 it should be easy for you to write down the Hilbert
series and the Hilbert quasipolynomial. (But keep in mind that the grading has a denominator.)

rank of class group = 1

finite cyclic summands:

4: 2

0 lattice points in polytope (Hilbert basis elements of degree 1):

9 further Hilbert basis elements of higher degree:

...

4 extreme rays:

0 4 2 4 2 0 2 0 4

2 0 4 4 2 0 0 4 2

2 4 0 0 2 4 4 0 2

4 0 2 0 2 4 2 4 0

We have listed the extreme rays since they have changed after the introduction of the congru-
ences, although the cone has not changed. The reason is that Normaliz always chooses the
extreme rays from the efficient lattice E.

4 support hyperplanes:

...

6 equations:

... 3 basis elements of generated lattice:

1 0 -1 -2 0 2 1 0 -1

2 congruences: 0 1 -1 -1 0 1 1 -1 0

1 0 0 0 0 0 0 0 0 2 0 0 3 4 1 -2 -1 2 2

0 1 0 0 1 0 0 0 0 2

The rank of the lattice has of course not changed, but after the introduction of the congruences
the basis has changed.

2.6.3. The lattice as input

It is possible to define the lattice by generators. We demonstrate this for the magic squares
with even corners. The lattice has just been computed (3x3magiceven_lat.in):

36

amb_space 9

lattice 3

0 1 2 3 1 -1 0 1 2

2 -1 2 1 1 1 0 3 0

0 3 0 1 1 1 2 -1 2

grading

1 1 1 0 0 0 0 0 0

It produces the same output as the version starting from equations and congruences.

lattice has a variant that takes the saturation of the sublattice generated by the input vectors
(3x3magic_sat.in):

amb_space 9

saturation 3

0 1 2 3 1 -1 0 1 2

2 -1 2 1 1 1 0 3 0

0 3 0 1 1 1 2 -1 2

grading

1 1 1 0 0 0 0 0 0

Clearly, we remove the congruences by this choice and arrive at the output of 3x3magic.in.

2.7. Decomposition in a numerical semigroup

Let S = 〈6,10,15〉, the numerical semigroup generated by 6,10,15. How can 97 be written as
a sum in the generators?

In other words: we want to find all nonnegative integral solutions to the equation

6x1 +10x2 +15x3 = 97.

Input (NumSemi.in):

amb_space 3

constraints 1 symbolic

6x[1] + 10x[2] + 15x[3] = 97;

The equation cuts out a triangle from the positive orthant.

The set of solutions is a module over the monoid M of solutions of the homogeneous equation
6x1 +10x2 +15x3 = 0. So M = 0 in this case.

6 lattice points in polytope (module generators):

2 1 5 1

2 4 3 1

2 7 1 1

37

7 1 3 1

7 4 1 1

12 1 1 1

0 Hilbert basis elements of recession monoid:

The last line is as expected, and the 6 lattice points (or module generators) are the goal of the
computation.

Normaliz is smart enough to recognize that it must compute the lattice points in a polygon,
and does exactly this. You can recognize it in the console output: Normaliz 3.9.3 has used the
project-and-lift algorithm. We will discuss it further in Section 2.13 and Section 6.2.1.

For those who like to play: add the option --NoProjection to the command line. Then the
terminal output will change; Normaliz computes the lattice points as a truncated Hilbert basis
via a triangulation (only one simplicial cone in this case).

2.8. A job for the dual algorithm

We increase the size of the magic squares to 5× 5. Normaliz can do the same computation
as for 3× 3 squares, but this will take some minutes. Suppose we are only interested in the
Hilbert basis, we should use the dual algorithm for this example. (The dual algorithm goes
back to Pottier [28].) The input file is 5x5dual.in:

amb_space 25

equations 11

1 1 1 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

1 1 1 1 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0

grading

1 1 1 1 1 0

HilbertBasis

The input file does not say anything about the dual algorithm mentioned in the section title.
With this input it is chosen automatically. See Section 6.5 for a discussion of when this
happens. But you can insist on the dual algorithm by adding DualMode to the input (or -d to
the command line). Or, if you want to compare it to the primal algorithm add PrimalMode (or
-P to the command line).

The Hilbert basis contains 4828 elements, too many to be listed here.

With the file 5x5.in you can compute the Hilbert basis and the Hilbert series, and the latter
with HSOP:

Hilbert series (HSOP):

1 15 356 4692 36324 198467 ... 198467 36324 4692 356 15 1

denominator with 15 factors:

1: 5 2: 3 6: 2 12: 1 60: 2 420: 1 1260: 1

38

degree of Hilbert Series as rational function = -5

The numerator of the Hilbert Series is symmetric.

In view of the length of the numerator of the Hilbert series it may be difficult to observe the
symmetry. So Normaliz does it for you. The symmetry shows that the monoid is Gorenstein,
but if you are only interested in the Gorenstein property, there is a much faster way to check it
(see Section 6.7).

The size 6×6 is out of reach for the Hilbert series, but the Hilbert basis can be computed (in
the automatically chosen dual mode). It takes some hours.

2.9. A dull polyhedron

We want to compute the polyhedron defined by the inequalities

ξ2 ≥−1/2,
ξ2 ≤ 3/2,
ξ2 ≤ ξ1 +3/2.

They are contained in the input file InhomIneq.in:

amb_space 2

constraints 3

0 1 >= -1/2

0 1 <= 3/2

-1 1 <= 3/2

grading

unit_vector 1

FVector

The grading says that we want to count points by the first coordinate, namely along the green
lines:

It yields the output

2 module generators

1 Hilbert basis elements of recession monoid

2 vertices of polyhedron

1 extreme rays of recession cone

39

3 support hyperplanes of polyhedron (homogenized)

f-vector:

1 2 3 1

The empty set is the intersection of all facets, and this gives the first entry 1. Then we have 2
vertices, 3 edges, and finally the full polyhedron.

The out put continues:

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 1

size of triangulation = 1

resulting sum of |det|s = 8

dehomogenization:

0 0 1

grading:

1 0 0

The interpretation of the grading requires some care in the inhomogeneous case. We have
extended the input grading vector by an entry 0 to match the embedding dimension. For the
computation of the degrees of lattice points in the ambient space you can either use only the
first 2 coordinates or take the full scalar product of the point in homogenized coordinates and
the extended grading vector.

module rank = 2

multiplicity = 2

The module rank is 2 in this case since we have two “layers” in the solution module that are
parallel to the recession monoid. This is of course also reflected in the Hilbert series.

Hilbert series:

1 1

denominator with 1 factors:

1: 1

shift = -1

We haven’t seen a shift yet. It is always printed (necessarily) if the Hilbert series does not start
in degree 0. In our case it starts in degree −1 as indicated by the shift −1. We thus get the
Hilbert series

t−1 t + t
1− t

=
t−1 +1

1− t
.

Note: We used the opposite convention for the shift in Normaliz 2.

40

Note that the Hilbert (quasi)polynomial is always computed for the unshifted monoid defined
by the input data. (This was different in previous versions of Normaliz.)

degree of Hilbert Series as rational function = -1

Hilbert polynomial:

2

with common denominator = 1

2 module generators:

-1 0 1

0 1 1

1 Hilbert basis elements of recession monoid:

1 0 0

2 vertices of polyhedron:

-4 -1 2

0 3 2

1 extreme rays of recession cone:

1 0 0

3 support hyperplanes of polyhedron (homogenized):

0 -2 3

0 2 1

2 -2 3

The dual algorithm that was used in Section 2.8 can also be applied to inhomogeneous com-
putations. We would of course loose the Hilbert series. In certain cases it may be preferable
to suppress the computation of the vertices of the polyhedron if you are only interested in the
integer points; see Section 4.6.

2.9.1. Defining it by generators

If the polyhedron is given by its vertices and the recession cone, we can define it by these data
(InhomIneq_gen.in):

amb_space 2

vertices 2

-4 -1 2

0 3 2

cone 1

1 0

grading

41

unit_vector 1

The output is identical to the version starting from the inequalities.

2.10. The Condorcet paradox

In social choice elections each of the k voters picks a linear preference order of the n candi-
dates. There are n! such orders. The election result is the vector (x1, . . . ,xN), N = n!, in which
xi is the number of voters that have chosen the i-th preference order in, say, lexicographic enu-
meration of these orders. (Thus x1 + · · ·+ xN = k.) In the following we assume the impartial
anonymous culture according to which every election result has the same probability if the
number of voters is fixed.

We say that candidate A beats candidate B if the majority of the voters prefers A to B. As the
Marquis de Condorcet (and others) observed, “beats” is not transitive, and an election may
exhibit the Condorcet paradox: there is no Condorcet winner. (See [15] and the references
given there for more information.)

We want to find the probability for k→∞ that there is a Condorcet winner for n= 4 candidates.
The event that A is the Condorcet winner can be expressed by linear inequalities on the election
outcome (a point in 24-space). The wanted probability is the lattice normalized volume of the
polytope cut out by the inequalities at k = 1. The file Condorcet.in:

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

Multiplicity

The first inequality expresses that A beats B, the second and the third say that A beats C and
D. (So far we do not exclude ties, and they need not be excluded for probabilities as k→ ∞.)

In addition to these inequalities we must restrict all variables to nonnegative values, and this
is achieved by adding the attribute nonnegative. The grading is set by total_degree. It
replaces the grading vector with 24 entries 1. Finally Multiplicity sets the computation
goal.

From the output file we only mention the quantity we are out for:

multiplicity = 1717/8192

multiplicity (float) = 0.209594726562

Since there are 4 candidates, the probability for the existence of a Condorcet winner is 1717/2048=
0.209595.

42

We can refine the information on the Condorcet paradox by computing the Hilbert series.
Either we delete Multiplicity from the input file or, better, we add --HilbertSeries (or
simply -q) on the command line. The result:

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6

denominator with 24 factors:

1: 1 2: 14 4: 9

degree of Hilbert Series as rational function = -25

If your executable of Normaliz was built with CoCoALib (see Section 11), for example the
executables for Linux or Mac OS from our distribution or in the Docker image, it uses sym-
metrization for the computation of the Hilbert series. If not, then simply disregard any remark
on symmetrization. Everything runs very quickly also without it.

If symmetrization has been used, you will also find a file Condorcet.symm.out in your direc-
tory. It contains the data computed for the symmetrization. You need not care at this point.
We take continue the discussion of symmetrization in Section 6.8.

2.10.1. Excluding ties

Now we are more ambitious and want to compute the Hilbert series for the Condorcet para-
dox, or more precisely, the number of election outcomes having A as the Condorcet winner
depending on the number k of voters. Moreover, as it is customary in social choice theory, we
want to exclude ties. The input file changes to CondorcetSemi.in:

amb_space 24

excluded_faces 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

HilbertSeries

We could omit HilbertSeries, and the computation would include the Hilbert basis. The
type excluded_faces only affects the Hilbert series. In every other respect it is equivalent to
inequalities.

From the file CondorcetSemi.out we only display the Hilbert series:

Hilbert series:

6 15 481 890 12346 ... 100915 69821 8655 4581 363 133 5 1

denominator with 24 factors:

1: 1 2: 14 4: 9

shift = 1

43

degree of Hilbert Series as rational function = -24

Surprisingly, this looks like the Hilbert series in the previous section read backwards, roughly
speaking. This is true, and one can explain it as we will see below.

It is justified to ask why we don’t use strict_inequalities instead of excluded_faces.
It does of course give the same Hilbert series. However, Normaliz cannot (yet) apply sym-
metrization in inhomogeneous computations. Moreover, the algorithmic approach is different,
and according to our experience excluded_faces is more efficient, independently of sym-
metrization.

See Section 6.20 for more information on excluded_faces.

2.10.2. At least one vote for every preference order

Suppose we are only interested in elections in which every preference order is chosen by at
least one voter. This can be modeled as follows (Condorcet_one.in):

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

strict_signs

1 1

total_degree

HilbertSeries

The entry 1 at position i of the vector strict_signs imposes the inequality xi≥ 1. A−1 would
impose the inequality xi ≤−1, and the entry 0 imposes no condition on the i-th coordinate.

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6

denominator with 24 factors:

1: 1 2: 14 4: 9

shift = 24

degree of Hilbert Series as rational function = -1

Again we encounter (almost) the Hilbert series of the Condorcet paradox (without side con-
ditions). It is time to explain this coincidence. Let C be the Condorcet cone defined by the
nonstrict inequalities, M the monoid of lattice points in it, I1 ⊂ M the ideal of lattice points
avoiding the 3 facets defined by ties, I2 the ideal of lattice points with strictly positive coordi-
nates, and finally I3 the ideal of lattice points in the interior of C. Moreover, let 1 ∈ Z24 be the
vector with all entries 1.

44

Since 1 lies in the three facets defining the ties, it follows that I2 = M+1. This explains why
we obtain the Hilbert series of I2 by multiplying the Hilbert series of M by t24, as just observed.
Generalized Ehrhart reciprocity (see [7, Theorem 6.70]) then explains the Hilbert series of I1
that we observed in the previous section. Finally, the Hilbert series of I3 that we don’t have
displayed is obtained from that of M by “ordinary” Ehrhart reciprocity. But we can also obtain
I1 from I3: I1 = I3−1, and generalized reciprocity follows from ordinary reciprocity in this
very special case. (Also see [12].)

The essential point in these arguments (apart from reciprocity) is that 1 lies in all support
hyperplanes of C except the coordinate hyperplanes.

You can easily compute the Hilbert series of I3 by making all inequalities strict.

As the terminal output shows, symmetrization has not been applied for the reason mentioned
above: strict_signs is an inhomogeneous input type. It would of course be possible to
encode the strict signs as excluded_faces. Then the sparse format of matrices is very handy:

excluded_faces 24

1:1;

1:2;

...

1:24;

This is a shorthand for the unit matrix.

2.10.3. The f-vector with codimension bound

Suppose we are interested in the f-vector of the cone defined by Condorcet.in. In view of the
rather high dimension the face lattice must be expected to be extremely large, but computing
the f-vector to codimension 4 should be no problem. (See [6] for the Normaliz face lattice
algorithm.) Indeed it is not. We use CondorcetFV.in:

...

FVector

face_codim_bound 4

Then we find in the output file:

f-vector (possibly truncated):

17550 2925 351 27 1

Note that the face numbers are listed by descending codimension or, equivalently, by increas-
ing dimension. The leftmost number is the number of faces in the highest codimension that
has been computed. So we have 17550 codimension 4 faces.

45

2.11. Testing normality

We want to test the monoid A4×4×3 defined by 4× 4× 3 contingency tables for normality
(see [8] for the background). The input file is A443.in:

amb_space 40

cone_and_lattice 48

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

HilbertBasis

Why cone_and_lattice? Well, we want to find out whether the monoid is normal, i.e.,
whether M = C(M)∩ gp(M). If M is even integrally closed in Z24, then it is certainly inte-
grally closed in the evidently smaller lattice gp(M), but the converse does not hold in general,
and therefore we work with the lattice generated by the monoid generators.

It turns out that the monoid is indeed normal:
original monoid is integrally closed in chosen lattice

Actually the output file reveals that M is even integrally closed in Z24: the external index is 1,
and therefore gp(M) is integrally closed in Z24.

The output file also shows that there is a grading on Z24 under which all our generators have
degree 1. We could have seen this ourselves: Every generator has exactly one entry 1 in the
first 16 coordinates. (This is clear from the construction of M.)

A noteworthy detail from the output file:

size of partial triangulation = 48

It shows that Normaliz uses only a partial triangulation in Hilbert basis computations; see [8].

It is no problem to compute the Hilbert series as well if you are interested in it. Simply add -q

to the command line or remove HilbertBasis from the input file. Then a full triangulation is
needed (size 2,654,272).

Similar examples are A543, A553 and A643. The latter is not normal, as we will see below. Even
on a standard PC or laptop, the Hilbert basis computation does not take very long because
Normaliz uses only a partial triangulation. The Hilbert series can still be determined, but the
computation time will grow considerably since the it requires a full triangulation. See [11] for
timings.

2.11.1. Computing just a witness

If the Hilbert basis is large and there are many support hyperplanes, memory can become an
issue for Normaliz, as well as computation time. Often one is only interested in deciding
whether the given monoid is integrally closed (or normal). In the negative case it is enough
to find a single element that is not in the original monoid – a witness disproving integral

46

closedness. As soon as such a witness is found, Normaliz stops the Hilbert basis computation
(but will continue to compute other data if they are asked for). We look at the example A643.in
(for which the full Hilbert basis is not really a problem):

amb_space 54

cone_and_lattice 72

1 0 1 0 ...

...

0 1 0 0 ...

WitnessNotIntegrallyClosed

Don’t add HilbertBasis because it will overrule IsIntegrallyClosed!

The output:

72 extreme rays

153858 support hyperplanes

embedding dimension = 54

rank = 42

external index = 1

internal index = 1

original monoid is not integrally closed in chosen lattice

witness for not being integrally closed:

0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 ...

grading:

1 0 0 0 0 0 0 0 0 0 0 0 ...

degrees of extreme rays:

1: 72

72 extreme rays:

0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...

...

If you repeat such a computation, you may very well get a different witness if several parallel
threads find witnesses. Only one of them is delivered.

If you just want to check integral closedness as quickly as possible, replace WitnessNotIntegrallyClosed
by IsIntegrallyClosed. Normaliz first checks some necessary conditions. If they are satis-
fied, the calculation of the Hilbert basis is started. If it finds a witness for not being integrally
closed, the witness is displayed in the output.

47

2.12. Convex hull computation/vertex enumeration

Normaliz computes convex hulls as should be very clear by now, and the only purpose of
this section is to emphasize that Normaliz can be restricted to this task by setting an explicit
computation goal. By convex hull computation we mean the determination of the support
hyperplanes of a polyhedron is given by generators (or vertices). The converse operation is
vertex enumeration. Both amount to the dualization of a cone, and can therefore be done by
the same algorithm.

As an example we take the input file cyclicpolytope30-15.in, the cyclic polytope of dimen-
sion 15 with 30 vertices (suggested by D. Avis and Ch. Jordan):

/* cyclic polytope of dimension 15 with 30 vertices */

amb_space 16

polytope 30

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

...

30 900 27000 810000 ... 478296900000000000000 14348907000000000000000

SupportHyperplanes

Already the entries of the vertices show that the computation cannot be done in 64 bit arith-
metic. But you need not be worried. Just start Normaliz as usual. It will simply switch to
infinite precision by itself, as shown by the terminal output (use the option -c or --Verbose).

\.....|

Normaliz 3.2.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

January 2017 \.|

\|

**
Compute: SupportHyperplanes

Could not convert 15181127029874798299.

Arithmetic Overflow detected, try a bigger integer type!

Restarting with a bigger type.

**
starting primal algorithm (only support hyperplanes) ...

Generators sorted lexicographically

Start simplex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gen=17, 72 hyp

gen=18, 240 hyp

gen=19, 660 hyp

gen=20, 1584 hyp

gen=21, 3432 hyp

gen=22, 6864 hyp

gen=23, 12870 hyp

gen=24, 22880 hyp

48

gen=25, 38896 hyp

gen=26, 63648 hyp

gen=27, 100776 hyp

gen=28, 155040 hyp

gen=29, 232560 hyp

gen=30, 341088 hyp

Pointed since graded

Select extreme rays via comparison ... done.

--

transforming data... done.

Have a look at the output file if you are not afraid of 341088 linear forms.

If you have looked closely at the terminal output above, you should have stumbled on the lines

Could not convert 15181127029874798299.

Arithmetic Overflow detected, try a bigger integer type!

They show that Normaliz has tried the computation in 64 bit integers, but encountered a num-
ber that is too large for this precision. It has automatically switched to infinite precision. (See
Section 4.3 for more information on integer types.)

2.13. Lattice points in a polytope and its Euclidean volume

The computation of lattice points in a polytope can be viewed as a truncated Hilbert basis
computation, and we have seen in preceding examples. But Normaliz can be restricted to
their computation, with homogeneous as well as with inhomogeneous input. Let us look at
ChF_8_1024.in:

amb_space 8

constraints 16

0.10976576 0.2153132834 ... 0.04282847494 >= -1/2

...

0.10976576 -0.2153132834 ... -0.04282847494 >= -1/2

0.10976576 0.2153132834 ... 0.04282847494 <= 1/2

0.10976576 -0.2153132834 ...-0.04282847494 <= 1/2

LatticePoints

ProjectionFloat

This example comes from numerical analysis; see Ch. Kacwin, J. Oettershagen and T. Ullrich,
On the orthogonality of the Chebyshev-Frolov lattice and applications, Monatsh. Math. 184
(2017), 425–441). Its origin explains the decimal fractions in the input. Normaliz converts
them immediately into ordinary fractions of type numerator/denominator, and then makes the
input integral as usual.

In the output file you can see to what integer vectors Normaliz has converted the inequalities
of the input file:

49

16 support hyperplanes of polyhedron (homogenized):

5488288000 10765664170 ... 2141423747 25000000000

...

-5488288000 10765664170 ... 2141423747 25000000000

The option ProjectionFloat indicates that we want to compute the lattice points in the poly-
tope defined by the inequalities and that we want to use the floating point variant of the
project-and-lift algorithm; Projection would make Normaliz use its ordinary arithmetic in
this algorithm. For our example the difference in time is not really significant, but when you
try VdM_16_1048576.in, it becomes very noticeable. Let us have a look at the relevant part of
then terminal output:

Polyhedron is parallelotope

Computing lattice points by project-and-lift

LLL based on support hyperplanes

Projection

embdim 9 inequalities 16

...

embdim 6 inequalities 140

...

embdim 2 inequalities 2

embdim 1 inequalities 0

Lifting

Lifting to dimension 2

Lifting to dimension 3

...

Lifting to dimension 8

Lifting to dimension 9

embdim 2 LatticePoints 5

embdim 3 LatticePoints 21

...

embdim 8 LatticePoints 907

embdim 9 LatticePoints 1067

Project-and-lift complete

We start with embedding dimension 9 since we need a homogenizing coordinate in inhomoge-
neous computations. Then the polytope is successively projected onto a coordinate hyperplane
until we reach a line segment given by 2 inequalities. In the second part Normaliz lifts the lat-
tice points back through all projections. The following figure illustrates the procedure for a
polygon that is projected to a line segment.

50

The green lines show the fibers over the lattice points in the (red) line segment. Note that
not every lattice point in the projection must be liftable to a lattice point in the next higher
dimension.

In ChF_8_1024.out we see
1067 lattice points in polytope (module generators):

-4 0 0 0 0 0 0 0 1

-3 0 0 0 -1 0 0 0 1

-3 0 0 0 0 0 0 0 1

...

3 0 0 0 0 0 0 0 1

3 0 0 0 1 0 0 0 1

4 0 0 0 0 0 0 0 1

Normaliz finds out that our polytope is in fact a parallelotope. This allows Normaliz to sup-
press the computation of its vertices. We are not interested in them, and they look frightening
when written as ordinary fractions (computed with the additional option SupportHyperplanes).
This is only the first vertex, the denominator is the number in the last row:

256 vertices of polyhedron:

-7831972155307708173239167258085974255845869779051329651906336771582421875

-2560494334732147696394408175864650673712115229853232268085759500000000000

2411932924117448250036041241683237083742860005142447171295674845000000000

-2170682283899852950367663781367299946065844697990214478942400250000000000

1846013540077621750562232333569651551559659207659438074760922800500000000

-1450403531662801634587765586956338287943865886737024582718631750000000000

999055328718773316303519268629091038893656784654239444024061220000000000

-509313990522468215816366827427428831508901797188810249435062450000000000

2292486335803169657316823615602461625422283571089603408672092012129842506

...

Not all polytopes are parallelotopes, and in most cases Normaliz must compute the vertices or
extreme rays as an auxiliary step, even if we are not interested in them. You can always add
the option

NoExtRaysOutput

if you want to suppress their output. (The numerical information on the number of extreme
rays etc. will however be included in the output file if it is available.) Similarly one can
suppress the output of support hyperplanes by

51

NoSuppHypsOutput

On the other hand, the information provided by the vertices or support hyperplanes may be
important. Instead of the unreadable integer output shown above, you can ask for

VerticesFloat

Then the vertices of polyhedra are printed in floating point format:

256 vertices of polyhedron:

-3.41637 -1.11691 1.0521 ... 0.435796 -0.222167 1

-3.41637 -0.946868 0.435796 ... -1.0521 0.632677 1

...

Note that they can only be printed if a polyhedron is defined. This is always the case in
inhomogeneous computations, but in the homogeneous case a grading is necessary. There is
also a variant ExtremeRaysFloat.

Similarly we can get the support hyperplanes in floating point format (they are only defined
up to a positive scalar multiple) by

SuppHypsFloat

resulting in

16 support hyperplanes of polyhedron (homogenized):

-0.219532 -0.430627 -0.405641 ... -0.168022 -0.0856569 1

-0.219532 -0.365068 -0.168022 ... 0.405641 0.24393 1

...

By its construction, our polytope should have Euclidean volume 1024. We can confirm this
number by computing the volume, using the option

Volume, -V

We get

volume (normalized) = 205078125000...00/49670537275735342575...58763

volume (normalized, float) =41287680.0308

volume (Euclidean) = 1024.00000076

The result makes us happy, despite of the small inaccuracy of the floating point computation
on which the Euclidean volume is based. See Section 6.1.1 for a discussion of volumes and
multiplicities.

2.14. The integer hull

The integer hull of a polyhedron P is the convex hull of the set of lattice points in P (despite of
its name, it usually does not contain P). Normaliz computes by first finding the lattice points
and then computing the convex hull. The computation of the integer hull is requested by the
computation goal IntegerHull.

The computation is somewhat special since it creates a second cone (and lattice) Cint. In

52

homogeneous computations the degree 1 vectors generate Cint by an input matrix of type
cone_and_lattice. In inhomogeneous computations the module generators and the Hilbert
basis of the recession cone are combined and generate Cint. Therefore the recession cone is
reproduced, even if the polyhedron should not contain a lattice point.

The integer hull computation itself is always inhomogeneous. The output file for Cint is
<project>.IntHull.out.

As a very simple example we take rationalIH.in (rational.in augmented by IntegerHull):

amb_space 3

cone 3

1 1 2

-1 -1 3

1 -2 4

grading

unit_vector 3

HilbertSeries

IntegerHull

It is our rational polytope from Section 2.5. We know already that the origin is the only lattice
point it contains. Nevertheless let us have a look at rationalIH.IntHull.out:

1 vertices of polyhedron

0 extreme rays of recession cone

1 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 0

rank of recession monoid = 0 (polyhedron is polytope)

internal index = 1

1 vertices of polyhedron:

0 0 1

0 extreme rays of recession cone:

1 support hyperplanes of polyhedron (homogenized):

0 0 1

2 equations:

1 0 0

0 1 0

1 basis elements of generated lattice:

53

0 0 1

Since the lattice points in P are already known, the goal was to compute the constraints defin-
ing the integer hull. Note that all the constraints defining the integer hull can be different from
those defining P. In this case the integer hull is cit out by the 2 equations.

As a second example we take the polyhedron of Section 2.9. The integer hull is the “green”
polyhedron:

The input is InhomIneqIH.in (InhomIneq.in augmented by IntegerHull). The data of the
integer hull are found in InhomIneqIH.IntHull.out:

...

2 vertices of polyhedron:

-1 0 1

0 1 1

1 extreme rays of recession cone:

1 0 0

3 support hyperplanes of polyhedron (homogenized):

0 -1 1

0 1 0

1 -1 1

2.15. Inhomogeneous congruences

We want to compute the nonnegative solutions of the simultaneous inhomogeneous congru-
ences

x1 +2x2 ≡ 3 (7),
2x1 +2x2 ≡ 4 (13)

in two variables. The input file InhomCong.in is

amb_space 2

constraints 2 symbolic

x[1] + 2x[2] ~ 3 (7);

2x[1] + 2x[2] ~ 4 (13);

54

This is an example of input of symbolic constraints. We use ~ as the best ASCII character for
representing the congruence sign ≡.

Alternatively one can use a matrix in the input As for which we must move the right hand side
over to the left.

amb_space 2

inhom_congruences 2

1 2 -3 7

2 2 -4 13

It is certainly harder to read.

The first vector list in the output:

3 module generators:

0 54 1

1 1 1

80 0 1

Easy to check: if (1,1) is a solution, then it must generate the module of solutions together
with the generators of the intersections with the coordinate axes. Perhaps more difficult to
find:

6 Hilbert basis elements of recession monoid:

0 91 0

1 38 0

3 23 0 1 vertices of polyhedron:

5 8 0 0 0 91

12 1 0

91 0 0

Strange, why is (0,0,1), representing the origin in R2, not listed as a vertex as well? Well the
vertex shown represents an extreme ray in the lattice E, and (0,0,1) does not belong to E.

2 extreme rays of recession cone:

0 91 0

91 0 0

3 support hyperplanes of polyhedron (homogenized)

0 0 1

0 1 0

1 0 0

1 congruences:

58 32 1 91

Normaliz has simplified the system of congruences to a single one.

3 basis elements of generated lattice:

1 0 33

55

0 1 -32

0 0 91

Again, don’t forget that Normaliz prints a basis of the efficient lattice E.

2.15.1. Lattice and offset

The set of solutions to the inhomogeneous system is an affine lattice in R2. The lattice basis
of E above does not immediately let us write down the set of solutions in the form w+L0 with
a subgroup L0, but we can easily transform the basis of E: (1,1,1) is in E and we use it to
reduce the third column of the other two basis elements to 0. Try the file InhomCongLat.in:

amb_space 2

offset

1 1

lattice 2

5 8

-12 -1

2.15.2. Variation of the signs

Suppose we want to solve the system of congruences under the condition that both variables
are negative (InhomCongSigns.in):

amb_space 2

inhom_congruences 2

1 2 -3 7

2 2 -4 13

signs

-1 -1

The two entries of the sign vector impose the sign conditions x1 ≤ 0 and x2 ≤ 0.

From the output we see that the module generators are more complicated now:

4 module generators:

-11 0 1

-4 -7 1

-2 -22 1

0 -37 1

The Hilbert basis of the recession monoid is simply that of the nonnegative case multiplied by
−1.

56

2.16. Integral closure and Rees algebra of a monomial ideal

Next, let us discuss the example MonIdeal.in (typeset in two columns):

amb_space 5

rees_algebra 9

1 2 1 2 1 0 3 4

3 1 1 3 5 1 0 1

2 5 1 0 2 4 1 5

0 2 4 3 2 2 2 4

0 2 3 4

The input vectors are the exponent vectors of a monomial ideal I in the ring K[X1,X2,X3,X4].
We want to compute the normalization of the Rees algebra of the ideal. In particular we can
extract from it the integral closure of the ideal. Since we must introduce an extra variable T ,
we have amb_space 5.

In the Hilbert basis we see the exponent vectors of the Xi, namely the unit vectors with last
component 0. The vectors with last component 1 represent the integral closure I of the ideal.
There is a vector with last component 2, showing that the integral closure of I2 is larger than I2.

16 Hilbert basis elements:

0 0 0 1 0

...

5 1 0 1 1

6 5 2 2 2

11 generators of integral closure of the ideal:

0 2 3 4

...

5 1 0 1

The output of the generators of I is the only place where we suppress the homogenizing vari-
able for “historic” reasons. If we extract the vectors with last component 1 from the extreme
rays, then we obtain the smallest monomial ideal that has the same integral closure as I.

10 extreme rays:

0 0 0 1 0

...

5 1 0 1 1

The support hyperplanes which are not just sign conditions describe primary decompositions
of all the ideals Ik by valuation ideals. It is not hard to see that none of them can be omitted for
large k (for example, see: W. Bruns and G. Restuccia, Canonical modules of Rees algebras. J.
Pure Appl. Algebra 201, 189–203 (2005)).

23 support hyperplanes:

0 0 0 0 1

0 ...

57

6 0 1 3 -13

2.16.1. Only the integral closure of the ideal

If only the integral closure of the ideal is to be computed, one can choose the input as follows
(IntClMonId.in):

amb_space 4

vertices 9

1 2 1 2 1

...

2 2 2 4 1

cone 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The generators of the integral closure appear as module generators in the output and the gen-
erators of the smallest monomial ideal with this integral closure are the vertices of the polyhe-
dron.

2.17. Starting from a binomial ideal

As an example, we consider the binomial ideal generated by

X2
1 X2−X4X5X6, X1X2

4 −X3X5X6, X1X2X3−X2
5 X6.

We want to find an embedding of the toric ring it defines and the normalization of the toric
ring. The input vectors are obtained as the differences of the two exponent vectors in the
binomials. So the input ideal lattice_ideal.in is

amb_space 6

lattice_ideal 3

2 1 0 -1 -1 -1

1 0 -1 2 -1 -1

1 1 1 0 -2 -1

In order to avoid special input rules for this case in which our object is not defined as a
subset of an ambient space, but as a quotient of type generators/relations, we abuse the name
amb_space: it determines the space in which the input vectors live.

We get the output

6 original generators of the toric ring

namely the residue classes of the indeterminates.

58

9 Hilbert basis elements

9 lattice points in polytope (Hilbert basis elements of degree 1)

So the toric ring defined by the binomials is not normal. Normaliz found the standard grading
on the toric ring. The normalization is generated in degree 1, too (in this case).

5 extreme rays

5 support hyperplanes

embedding dimension = 3

rank = 3 (maximal)

external index = 1

internal index = 1

original monoid is not integrally closed in chosen lattice

We saw that already.

size of triangulation = 5

resulting sum of |det|s = 10

grading:

1 -2 1

This is the grading on the ambient space (or polynomial ring) defining the standard grading
on our subalgebra. The enumerative data that follow are those of the normalization!

degrees of extreme rays:

1: 5

Hilbert basis elements are of degree 1

multiplicity = 10

Hilbert series:

1 6 3

denominator with 3 factors:

1: 3

degree of Hilbert Series as rational function = -1

Hilbert polynomial:

1 3 5

with common denominator = 1

rank of class group = 2

class group is free

59

6 original generators:

1 0 0

2 3 5

0 0 1

1 1 2

0 1 3

3 1 0

This is an embedding of the toric ring defined by the binomials. There are many choices, and
Normaliz has taken one of them. You should check that the generators in this order satisfy
the binomial equations. Turning to the ring theoretic interpretation, we can say that the toric
ring defined by the binomial equations can be embedded into K[Y1,Y2,Y3] as a monomial
subalgebra that is generated by Y 0

1 Y 0
2 Y 1

3 ,. . . ,Y 1
1 Y 0

2 Y 3
3 .

Now the generators of the normalization:

9 lattice points in polytope (Hilbert basis elements of degree 1):

5 extreme rays:

0 0 1 0 0 1

0 1 3 0 1 3

1 0 0 1 0 0

1 1 2 2 3 5

1 2 4 3 1 0

2 1 1

2 2 3 5 support hyperplanes:

2 3 5 0 0 15

3 1 0 0 1 0

1 0 0

2 -3 1

5 -15 7

0 further Hilbert basis elements of higher degree:

3. The input file

The input file <project>.in consists of items. There are several types of them:

(1) definition of the ambient space,
(2) matrices with integer or rational entries (depending on the type),
(3) vectors with integer entries,
(4) constraints in tabular or symbolic format,
(5) a polynomial,
(6) computation goals and algorithmic variants,

60

(7) numerical parameters,
(8) number field definition,
(9) comments.

An item cannot include another item. In particular, comments can only be inserted between
other items, but not within another item. Matrices and vectors can have two different formats,
plain and formatted.

Matrices and vectors are classified by the following attributes:

(1) generators, constraints, accessory,
(2) cone/polyhedron, (affine) lattice,
(3) homogeneous, inhomogeneous.

The line structure is irrelevant for the interpretation of the input, but it is advisable to use it for
the readability of the input file.

The input syntax of Normaliz 2 can still be used. It is explained in Appendix C.

3.1. Input items

3.1.1. The ambient space and lattice

The ambient space is specified as follows:

amb_space <d>

where <d> stands for the dimension d of the ambient vector space Rd in which the geometric
objects live. The ambient lattice A is set to Zd .

Alternatively one can define the ambient space implicitly by

amb_space auto

In this case the dimension of the ambient space is determined by Normaliz from the first
formatted vector or matrix in the input file. It is clear that any input item that requires the
knowledge of the dimension can only follow the first formatted vector or matrix.

In the following the letter d will always denote the dimension set with amb_space.

An example:

amb_space 5

indicates that polyhedra and lattices are subobjects of R5. The ambient lattice is Z5.

The first non-comment input item must specify the ambient space.

3.1.2. Plain vectors

A plain vector is built as follows:

61

<T>

<x>

<T> denotes the type and <x> is the vector itself. The number of components is determined
by the type of the vector and the dimension of the ambient space. At present, all vectors have
length d.

Example:

grading

1 0 0

Normaliz allows also the input of sparse vectors. Sparse input is signalized by the key word
sparse as the first entry. It is followed by entries of type <col>:<val> where <col> denotes
the column and <val> the value in that column. (The unspecified columns have entry 0.) A
sparse vector is terminated by the character ; . Example:

grading

sparse 1:1;

One can also set a range of entries in sparse vectors like in

grading

sparse 1:1 3..5:-1 7:1;

which produces the vector (1,0,−1,−1,−1,0,1,0 . . . ,0).

For unit vectors vectors there exists a shortcuts. Example:

total_degree

unit_vector 25

3.1.3. Formatted vectors

A formatted vector is built as follows:
<T>

[<x>]

where <T> denotes the type and <x> is the vector itself. The components can be separated
by white space, commas or semicolons. An example showing all possibilities (not recom-
mended):

grading

[1,0; 0 5]

62

3.1.4. Plain matrices

A plain matrix is built as follows:

<T> <m>

<x_1>

...

<x_m>

Here <T> denotes the type of the matrix, <m> the number of rows, and <x_1>,. . . ,<x_m> are
the rows. Some types allow rational and floating point matrix entries, others are restricted to
integers; see Sections 3.1.9 and 3.1.10.

The number of columns is implicitly defined by the dimension of the ambient space and the
type of the matrix. Example (with amb_space 3):

cone 3

1/3 2 3

4 5 6

11 12/7 13/21

Normaliz allows the input of matrices in transposed form:

<T> transpose <n>

<x_1>

...

<x_m>

Note that <n> is now the number of columns of the matrix that follows it (assumed to be the
number of input vectors). The number of rows is determined by the dimension of the ambient
space and the type of the matrix. Example:

cone transpose 3

1 0 3/2

0 1/9 4

is equivalent to

cone 3

1 0

0 1/9

3/2 4

Like vectors, matrices have a sparse input variant, again signalized by the key word sparse.
The rows are sparse vectors with entries <col>:<val>, and each row is concluded by the
character ;. Also here one can set a range of coordinates to the same value:

Example:

inequalities 2 sparse

1:1 2:-1;

63

3-5:-1;

chooses the 3× 3 unit matrix as a matrix of type inequalities. Note that also in case of
transposed matrices, sparse entry is row by row.

Matrices may have zero rows. Such empty matrices like

inhom_inequalities 0

can be used to make the input inhomogeneous (Section 3.1.15) or to avoid the automatic choice
of the positive orthant in certain cases (Section 3.1.16). (The empty inhom_inequalities have
both effects simultaneously.) Apart from these effects, empty matrices have no influence on
the computation.

3.1.5. Formatted matrices

A formatted matrix is built as follows:
<T>

[[<x_1>]

...

[<x_m>]]

Here <T> denotes the type of the matrix and <x_1>,. . . ,<x_m> are vectors. Legal separators
are white space, commas and semicolons. An example showing all possibilities (not really
recommended):

cone [

[2 1][3/7 4];

[0 1],

[9 10] [11 12/13]

]

Similarly as plain matrices, formatted matrices can be given in transposed form, and they can
be empty.

3.1.6. Constraints in tabular format

This input type is somewhat closer to standard notation than the encoding of constraints in
matrices. The general type of equations and inequalities is

<x> <rel> <rhs>;

where <x> denotes a vector of length d, <rel> is one of the relations =, <=, >=, <, > and <rhs>

is a number.

Congruences have the form

<x> ~ <int> (<mod>);

64

where <mod> is a nonzero integer.

Examples:

1/2 -2 >= 0.5

1 -1/7 = 0

-1 1 ~ 7 (9)

Note: all numbers and relation signs must be separated by white space.

3.1.7. Constraints in symbolic format

This input type is even closer to standard notation than the encoding of constraints in matrices
or in tabular format. It is especially useful if the constraints are sparse. Instead of assigning a
value to a coordinate via its position in a vector, it uses coordinates named x[<n>] where <n>

is the index of the coordinate. The index is counted from 1.

The general type of equations and inequalities is

<lhs> <rel> <rhs>;

where <lhs> and <rhs> denote affine linear function of the x<n> with rational coefficients. As
above, <rel> is one of the relations =, <=, >=, <, >. (Both <lhs> and <rhs> must be nonempty.)
Note the terminating semicolon.

Congruences have the form

<lhs> ~ <rhs> (<mod>);

where <mod> is a nonzero integer and <lhs> and <rhs> are affine linear functions with integer
coefficients.

Examples:

1/3x[1] >= 2x[2] + 5;

x[1]+1=1/4x[2] ;

-x[1] + x[2] ~ 7 (9);

There is no need to insert white space for separation, but it may be inserted anywhere where
it does not disrupt numbers or relation signs.

3.1.8. Polynomials

For the computation of weighted Ehrhart series and integrals Normaliz needs the input of a
polynomial with rational coefficients. The polynomial is first read as a string. For the com-
putation the string is converted by the input function of CoCoALib [1]. Therefore any string
representing a valid CoCoA expression is allowed. However the names of the indeterminates
are fixed: x[1],. . . ,x[<N> where <N>] is the value of amb_space. The polynomial must be
concluded by a semicolon.

65

Example:

(x[1]+1)*(x[1]+2)*(x[1]+3)*(x[1]+4)*(x[1]+5)*
(x[2]+1)*(x[3]+1)*(x[4]+1)*(x[5]+1)*(x[6]+1)*(x[7]+1)*
(x[8]+1)*(x[8]+2)*(x[8]+3)*(x[8]+4)*(x[8]+5)*1/14400;

(x[1]*x[2]*x[3]*x[4])^2*(x[1]-x[2])^2*(x[1]-x[3])^2*
(x[1]-x[4])^2*(x[2]-x[3])^2*(x[2]-x[4])^2*(x[3]-x[4])^2;

3.1.9. Rational numbers

Rational numbers are allowed in input matrices, but not in all. They are not allowed in vectors
and in matrices containing lattice generators and in congruences, namely in

lattice cone_and_lattice offset open_facets

congruences inhom_congruences rees_algebra lattice_ideal

grading dehomogenization signs strict_signs

They are allowed in saturation since it defines the intersection of the vector space generated
by the rows of the matrix with the integral lattice.

Avoid negative numbers as denominators.

Normaliz first reduces the input numbers to lowest terms. Then each row of a matrix is mul-
tiplied by the least common multiple of the denominators of its entries. In all applications
in which the original monoid generators play a role, one should use only integers in input
matrices to avoid any ambiguity.

3.1.10. Decimal fractions and floating point numbers

Normaliz accepts decimal fractions and floating point numbers in its input files. These are
precisely converted to ordinary fractions (or integers). Examples:

1.1 --> 11/10 0.5 --> 1/2 -.1e1 --> -1

It is not allowed to combine an ordinary fraction and a decimal fraction in the same number.
In other words, expressions like 1.0/2 are not allowed.

3.1.11. Numbers in algebraic extensions of Q

Their format is explained in Section 7.1 together with the definition of number fields.

3.1.12. Computation goals and algorithmic variants

These are single or compound words, such as

66

HilbertBasis

Multiplicity

The file can contain several computation goals, as in this example.

3.1.13. Comments

A comment has the form
/* <text> */

where <text> stands for the text of the comment. It can have arbitrary length and stretch over
several lines. Example:

/* This is a comment

*/

Comments are only allowed at places where also a new keyword would be allowed, especially
not between the entries of a matrix or a vector. Comments can not be nested.

3.1.14. Restrictions

Input items can be combined quite freely, but there are some restrictions:

(1) The types
cone, cone_and_lattice, polytope, rees_algebra

exclude each other mutually.
(2) The input type subspace excludes polytope and rees_algebra.
(3) The types

lattice, saturation, cone_and_lattice
exclude each other mutually.

(4) polytope can not be combined with grading.
(5) The only type that can be combined with lattice_ideal is grading.
(6) The following types cannot be combined with inhomogeneous types or dehomogenization:

polytope, rees_algebra, excluded_faces

(7) The following types cannot be combined with inhomogeneous types:
dehomogenization

(8) Special restrictions apply for the input types lattice_ideal and open_facets; see Sec-
tions 3.8 and 3.12.

(9) Special rules apply if precomputed data are used. See Section 6.23.
(10) For restrictions that apply to algebraic polyhedra see Section 7. Similar restrictions

apply if the input types rational_lattice and rational_offset are used (see Sec-
tion 6.21).

67

A non-restriction: the same type can appear several times. This is useful if one wants to
combine different formats, for example

inequalities 2 sparse

1:1;

1:1 3:-1;

inequalities 2

1 1 0 1

1 -1 -1 0

3.1.15. Homogeneous and inhomogeneous input

Apart from the restrictions listed in the previous section, homogeneous and inhomogeneous
types can be combined as well as generators and constraints. A single inhomogeneous type
or dehomogenization in the input triggers an inhomogeneous computation. The input item of
inhomogeneous type may be an empty matrix.

3.1.16. Default values

If there is no lattice defining item, Normaliz (virtually) inserts the the unit matrix as an input
item of type lattice. If there is no cone defining item, the unit matrix is (additionally) inserted
as an input item of type cone.

If the input is inhomogeneous, then Normaliz provides default values for vertices and the
offset as follows:

(1) If there is an input matrix type lattice, but no offset, then the offset 0 is inserted.
(2) If there is an input matrix of type cone, but no vertices, then the vertex 0 is inserted.

An important point. If the input does not contain any cone generators or inequalities, Nor-
maliz automatically assumes that you want to compute in the positive orthant. In order to
avoid this choice you can add an empty matrix of inequalities, inhom_inequalities or
strict_inequalities. This will not affect the results, but avoid the sign restriction.

3.1.17. Normaliz takes intersections

The input may contain several cone defining items and several lattice defining items. We con-
sider homogeneous input for simplicity. Inhomogeneous input is made homogeneous anyway.

One can subdivide the input items defining cones and lattices as follows:

1. cone generators: together they generate a cone C1;

2. cone constraints, namely inequalities and equations: they define the cone C2;

3. lattice generators: they generate the sublattice L1 and the vector subspace U1 = RL1;

4. lattice constraints, namely equations and congruences: they define the sublattice L2 and
the vector subspace U2 = RL2.

68

The cone defined by all these data is C=C1 ∩C2 ∩U1 ∩U2. The lattice defined by them is
RC∩L1∩L2.

3.2. Homogeneous generators

3.2.1. Cones

The main type is cone. The other two types are added for special computations.

cone is a matrix with d columns. Every row represents a vector, and they define the cone
generated by them. Section 2.3, 2cone.in

subspace is a matrix with d columns. The linear subspace generated by the rows is added to
the cone. Section 6.13.4.

polytope is a matrix with d− 1 columns. It is internally converted to cone extending each
row by an entry 1. Section 2.4, polytope.in. This input type automatically sets
NoGradingDenom and defines the grading (0, . . . ,0,1). Not allowed in combination with
inhomogeneous types.

rees_algebra is a matrix with d− 1 columns. It is internally converted to type cone in two
steps: (i) each row is extended by an entry 1 to length d. (ii) The first d−1 unit vectors
of length d are appended. Section 2.16, MonIdeal.in. Not allowed in combination with
inhomogeneous types.

extreme_rays is a matrix with d columns. See Section 6.23 for its use.
maximal_subspace is a matrix with d columns. See Section 6.23 for its use.

Moreover, it is possible to define a cone and a lattice by the same matrix:

cone_and_lattice The vectors of the matrix with d columns define both a cone and a lattice.
Section 2.11, A443.in.
If subspace is used in combination with cone_and_lattice, then the sublattice gener-
ated by its rows is added to the lattice generated by cone_and_lattice.

The Normaliz 2 types integral_closure and normalization can still be used. They are
synonyms for cone and cone_and_lattice, respectively.

3.2.2. Lattices

There are 5 types. With the exception of rational_lattice and saturation their entries are
integers.

lattice is a matrix with d columns. Every row represents a vector, and they define the lattice
generated by them. Section 2.6.3, 3x3magiceven_lat.in

rational_lattice is a matrix with d columns. Its entries can be fractions. Every row repre-
sents a vector, and they define the sublattice of Qd generated by them. See Section 6.21,
ratlat_2.in.

saturation is a matrix with d columns. Every row represents a vector, and they define the lat-
tice U∩Zd where U is the subspace generated by them. Section 2.6.3, 3x3magic_sat.in.

69

(If the vectors are integral, then U∩Zd is the saturation of the lattice generated by them.)
cone_and_lattice See Section 3.2.1.
generated_lattice is a matrix with d columns. See Section 6.23 for its use.
hilbert_basis_rec_cone is a matrix with d columns. It contains the precomputed Hilbert

basis of the recession cone. See Section 6.23.3.

3.3. Homogeneous Constraints

The coefficients ξi of the constraints are rational numbers unless indicated otherwise.

3.3.1. Cones

inequalities is a matrix with d columns. Every row (ξ1, . . . ,ξd) represents a homogeneous
inequality

ξ1x1 + · · ·+ξdxd ≥ 0

for the vectors (x1, . . . ,xd) ∈ Rd . Sections 2.3.2, 2.5.2, 2cone_ineq.in, poly_ineq.in
equations is a matrix with d columns. Every row (ξ1, . . . ,ξd) represents an equation

ξ1x1 + · · ·+ξdxd = 0

for the vectors (x1, . . . ,xd) ∈ Rd . Section 2.6, 3x3magic.in
signs is a vector with d entries in {−1,0,1}. It stands for a matrix of type inequalities

composed of the sign inequalities xi ≥ 0 for the entry 1 at the i-th component and the
inequality xi ≤ 0 for the entry −1. The entry 0 does not impose an inequality. See
Section 2.15.2, InhomCongSigns.in.

excluded_faces is a matrix with d columns. Every row (ξ1, . . . ,ξd) represents an inequality

ξ1x1 + · · ·+ξdxd > 0

for the vectors (x1, . . . ,xd) ∈ Rd . It is considered as a homogeneous input type though
it defines inhomogeneous inequalities. The faces of the cone excluded by the inequali-
ties are excluded from the Hilbert series computation, but excluded_faces behave like
inequalities in almost every other respect. Section 2.10.1, CondorcetSemi.in. Also
see Section 6.20.

support_hyperplanes is a matrix with d columns. See Section 6.23.

3.3.2. Lattices

congruences is a matrix with d+1 columns. Each row (ξ1, . . . ,ξd,c) represents a congruence

ξ1z1 + · · ·+ξdzd ≡ 0 mod c, ξi,c ∈ Z,

for the elements (z1, . . . ,zd) ∈ Zd . Section 2.6.2, 3x3magiceven.in.

70

3.4. Inhomogeneous generators

3.4.1. Polyhedra

vertices is a matrix with d+1 columns. Each row (p1, . . . , pd,q), q> 0, specifies a generator
of a polyhedron (not necessarily a vertex), namely

vi =

(
p1

q
, . . . ,

pn

q

)
, pi ∈Q,q ∈Q>0,

Section 2.9.1, InhomIneq_gen.in
Note: vertices and cone together define a polyhedron. If vertices is present in the
input, then the default choice for cone is the empty matrix.

The format of vertices was introduced when Normaliz only accepted integer numbers in its
input. There is no need for an extra denominator anymore, but for backward compatibility the
format has not been changed.

The Normaliz 2 input type polyhedron can still be used.

3.4.2. Affine lattices

offset is a vector with d integer entries. It defines the origin of the affine lattice. Sec-
tion 2.15.1, InhomCongLat.in.

rational_offset is a vector with d rational entries. It defines the origin of the rational affine
lattice. Section 6.21, ratlat_2.in.

Note: offset and lattice (or saturation) together define an affine lattice. If offset is
present in the input, then the default choice for lattice is the empty matrix.

3.5. Inhomogeneous constraints

3.5.1. Polyhedra

inhom_inequalities is a matrix with d +1 columns. We consider inequalities

ξ1x1 + · · ·+ξdxd ≥ η ,

rewritten as
ξ1x1 + · · ·+ξdxd +(−η)≥ 0

and then represented by the input vectors

(ξ1, . . . ,ξd,−η).

Section 2.9, InhomIneq.in.

71

inhom_equations is a matrix with d +1 columns. We consider equations

ξ1x1 + · · ·+ξdxd = η ,

rewritten as
ξ1x1 + · · ·+ξdxd +(−η) = 0

and then represented by the input vectors

(ξ1, . . . ,ξd,−η).

See Section 2.7NumSemi.in.
strict_inequalities is a matrix with d columns. We consider inequalities

ξ1x1 + · · ·+ξdxd ≥ 1,

represented by the input vectors
(ξ1, . . . ,ξd).

Section 2.3.3, 2cone_int.in.
strict_signs is a vector with d components in {−1,0,1}. It is the “strict” counterpart to

signs. An entry 1 in component i represents the inequality xi > 0, an entry−1 the oppo-
site inequality, whereas 0 imposes no condition on xi. Section 2.10.2, Condorcet_one.in

inhom_excluded_faces is a matrix with d + 1 columns. Every row (ξ1, . . . ,ξd,−η) repre-
sents an inequality

ξ1x1 + · · ·+ξdxd > η

for the vectors (x1, . . . ,xd) ∈ Rd . The faces of the polyhedron excluded by the in-
equalities are excluded from the Hilbert and Ehrhart series series computation, but
inhom_excluded_faces behave like inhom_inequalities in almost every other re-
spect. See Section 6.20.

3.5.2. Affine lattices

inhom_congruences We consider a matrix with d +2 columns. Each row (ξ1, . . . ,ξd,−η ,c)
represents a congruence

ξ1z1 + · · ·+ξdzd ≡ η mod c, ξi,η ,c ∈ Z,

for the elements (z1, . . . ,zd) ∈ Zd . Section 2.15, InhomCongSigns.in.

3.6. Tabular constraints

constraints <n> allows the input of <n> equations, inequalities and congruences in a for-
mat that is close to standard notation. As for matrix types the keyword constraints

is followed by the number of constraints. The syntax of tabular constraints has been

72

described in Section 3.2.1. If (ξ1, . . . ,ξd) is the vector on the left hand side and η the
number on the right hand side, then the constraint defines the set of vectors (x1, . . . ,xd)
such that the relation

ξ1x1 + · · ·+ξdxd rel η

is satisfied, where rel can take the values =,≤,≥,<,> with the represented by input
strings =,<=,>=,<,>, respectively.
Tabular constraints cannot be used for excluded_faces or inhom_excluded_faces.
A further choice for rel is ~. It represents a congruence ≡ and requires the additional
input of a modulus: the right hand side becomes η(c). It represents the congruence

ξ1x1 + . . .ξdxd ≡ η (mod c).

Sections 2.3.3, 2cone_int.in, 2.6.2, 3x3magiceven.in, 2.9, InhomIneq.in.

A right hand side 6= 0 makes the input inhomogeneous, as well as the relations < and >. Strict
inequalities are always understood as conditions for integers. So

ξ1x1 + · · ·+ξdxd < η

is interpreted as
ξ1x1 + . . .ξdxd ≤ η−1,

3.6.1. Forced homogeneity

It is often more natural to write constraints in inhomogeneous form, even when one wants the
computation to be homogeneous. The type constraints does not allow this. Therefore we
have introduced

hom_constraints for the input of equations, non-strict inequalities and congruences in the
same format as constraints, except that these constraints are meant to be for a homo-
geneous computation. It is clear that the left hand side has only d−1 entries now. See
Section 2.5.2, poly_hom_const.in.

3.7. Symbolic constraints

The input syntax is

constraints <n> symbolic where <n> is the number of constraints in symbolic form that
follow.

The constraints have the form described in Section 3.1.7. Note that every symbolic constraint
(including the last) must be terminated by a semicolon.

See Sections 2.7, NumSemi.in, 2.15, InhomCong.in.

The interpretation of homogeneity follows the same rules as for tabular constraints. The vari-
ant hom_constraints is allowed and works as for tabular constraints.

73

3.8. Relations

Relations do not select a sublattice of Zd or a subcone of Rd , but define a monoid as a quotient
of Zd

+ modulo a system of congruences (in the semigroup sense!).

The rows of the input matrix of this type are interpreted as generators of a subgroup U ⊂ Zd ,
and Normaliz computes an affine monoid and its normalization as explained in Section A.5.

Set G = Zd/U and L = G/torsion(G). Then the ambient lattice is A= Zr, r = rankL, and the
efficient lattice is L, realized as a sublattice of A. Normaliz computes the image of Zd

+ in L
and its normalization.

lattice_ideal is a matrix with d columns containing the generators of the subgroup U .
Section 2.17, lattice_ideal.in.

The type lattice_ideal cannot be combined with any other input type (except grading)—
such a combination would not make sense. (See Section 3.10.1 for the use of a grading in this
case.)

3.9. Unit vectors and unit matrix

A grading or a dehomogenization is often given by a unit vector:

unit_vector <n> represents the n-th unit vector in Rd where n is the number given by <n>.

This shortcut cannot be used as a row of a matrix. It can be used whenever a single vec-
tor is asked for, namely after grading, dehomogenization, signs and strict_signs. See
Section 2.5, rational.in.

The unit matrix can be given to every input type that expects a matrix:

unit_matrix

Example:

cone unit_matrix

The number of rows is defined by amb_space and the type of the matrix, as usual.

3.10. Grading

This type is accessory. A Z-valued grading can be specified in two ways:

(1) explicitly by including a grading in the input, or
(2) implicitly. In this case Normaliz checks whether the extreme integral generators of the

monoid lie in an (affine) hyperplane A given by an equation λ (x) = 1 with a Z-linear
form λ . If so, then λ is used as the grading.

Implicit gradings are only possible for homogeneous computations.

If the attempt to find an implicit grading causes an arithmetic overflow and verbose has
been set (say, by the option-c), then Normaliz issues the warning

74

Giving up the check for a grading

If you really need this check, rerun Normaliz with a bigger integer type.

Explicit definition of a grading:

grading is a vector of length d representing the linear form that gives the grading. Section 2.5,
rational.in.

total_degree represents a vector of length d with all entries equal to 1. Section 2.10,
Condorcet.in.

Before Normaliz can apply the degree, it must be restricted to the effective lattice E. Even if
the entries of the grading vector are coprime, it often happens that all degrees of vectors in E
are divisible by a greatest common divisor g > 1. Then g is extracted from the degrees, and it
will appear as denominator in the output file.

Normaliz checks whether all generators of the (recession) monoid have positive degree (after
passage to the quotient modulo the unit group in the nonpointed case). Vertices of polyhedra
may have degrees ≤ 0.

3.10.1. With lattice_ideal input

In this case the unit vectors correspond to generators of the monoid. Therefore the degrees
assigned to them must be positive. Moreover, the vectors in the input represent binomial
relations, and these must be homogeneous. In other words, both monomials in a binomial
must have the same degree. This amounts to the condition that the input vectors have degree
0. Normaliz checks this condition.

3.11. Dehomogenization

Like grading this is an accessory type.

Inhomogeneous input for objects in Rd is homogenized by an additional coordinate and then
computed in Rd+1, but with the additional condition xd+1 ≥ 0, and then dehomogenizing all
results: the substitution xd+1 = 1 acts as the dehomogenization, and the inhomogeneous input
types implicitly choose this dehomogenization.

Like the grading, one can define the dehomogenization explicitly:

dehomogenization is a vector of length d representing the linear form δ .

The dehomogenization can be any linear form δ satisfying the condition δ (x)≥ 0 on the cone
that is truncated. (In combination with constraints, the condition δ (x) ≥ 0 is automatically
satisfied since δ is added to the constraints.)

The input type dehomogenization can only be combined with homogeneous input types, but
makes the computation inhomogeneous, resulting in inhomogeneous output. The polyhedron
computed is the intersection of the cone C (and the lattice E) with the hyperplane given by
δ (x) = 1, and the recession cone is C∩{x : δ (x) = 0}.

75

A potential application is the adaptation of other input formats to Normaliz. The output must
then be interpreted accordingly.

Section 6.11, dehomogenization.in.

3.12. Open facets

The input type open_facets is similar to strict_inequalities. However, it allows to apply
strict inequalities that are not yet known. This makes only sense for simplicial polyhedra
where a facet can be identified by the generator that does not lie in it.

open_facets is a vector with entries ∈ {0,1}.
The restrictions for the use of open facets are the following:

(1) Only the input types cone, vertices and grading can appear together with open_facets.
(2) The vectors in cone are linearly independent.
(3) There is at most one vertex.

The number of vectors in cone may be smaller than d, but open_facets must have d entries.

open_facets make the computation inhomogeneous. They are interpreted as follows. Let v
be the vertex—if there are no vertices, then v is the origin. The shifted C′ = v+C is cut
out by affine-linear inequalities λi(x)≥ 0 with coprime integer coefficients. We number these
in such a way that λi(v+ ci) 6= 0 for the generators ci of C (in the input order), i = 1, . . . ,n.
Then all subsequent computations are applied to the shifted cone C′′ = v′+C defined by the
inequalities

λi(x)≥ ui

where the vector (u1, . . . ,ud) is given by open_facets. (If dimC < d, then the entries u j with
j > dimC are ignored.)

That 1 indicates “open” is in accordance with its use for the disjoint decomposition; see Sec-
tion 6.14.2. Section 6.19 discusses an example.

3.13. Coordinates for projection

The coordinates of a projection of the cone can be chosen by

projection_coordinates It is a 0-1 vector of length d.

The entries 1 mark the coordinates of the image of the projection. The other coordinates give
the kernel of the projection. See Section 6.12 for an example.

3.14. Numerical parameters

Certain numerical parameters used by Normaliz can (only) be set in the input file.

76

3.14.1. Degree bound for series expansion

It can be set by

expansion_degree <n>

where <n> is the number of coefficients to be computed and printed. See Section 6.10.

3.14.2. Number of significant coefficients of the quasipolynomial

It can be set by

nr_coeff_quasipol <n>

where <n> is the number of highest coefficients to be printed. See Section 6.10.3.

3.14.3. Codimension bound for the face lattice

It can be set by

face_codim_bound <n>

where <n> is the bound for the codimension of the faces to be computed.

3.14.4. Number of digits for fixed precision

The computation of vilumes by signed decomposition can be done with a fixed precision. It is
et by

decimal_digits <n>

where <n> sets the precision to 10−n.

3.14.5. Block size for distributed computation

See Appendix F for an explanation. It is set by

block_size_hollow_tri <n>

3.15. Pointedness

Since version 3.1 Normaliz can also compute nonpointed cones and polyhedra without ver-
tices.

3.16. The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

77

4. Computation goals and algorithmic variants

The library libnormaliz contains a class ConeProperties that collects computation goals,
algorithmic variants and additional data that are used to control the work flow in libnormaliz

as well as the communication with other programs. The latter are not important for the Nor-
maliz user, but are listed as a reference for libnormaliz. See Appendix D for a description of
libnormaliz.

All computation goals and algorithmic variants can be communicated to Normaliz in two
ways:

(1) in the input file, for example HilbertBasis,
(2) via a verbatim command line option, for example --HilbertBasis.

For the most important choices there are single letter command line options, for example -N

for HilbertBasis. The single letter options ensure backward compatibility to Normaliz 2. In
jNormaliz they are also accessible via their full names.

Some computation goals apply only to homogeneous computations, and some others make
sense only for inhomogeneous computations.

Some single letter command line options combine two or more computation goals, and some
algorithmic variants imply computation goals.

There are restrictions for algebraic polyhedra. See Section 7.3.

4.1. Default choices and basic rules

If several computation goals are set, all of them are pursued. In particular, computation goals
in the input file and on the command line are accumulated. But

--ignore, -i on the command line switches off the computation goals and algorithmic vari-
ants set in the input file.

The default computation goal is set if neither the input file nor the command line contains a
computation goal or an algorithmic variant that implies a computation goal. It is

SupportHyperplanes + HilbertBasis + HilbertSeries .

In the homogeneous case, ClassGroup is included as well.

If set explicitly in the input file or on the command line the following adds these computation
goals:

DefaultMode

DefaultMode can be set explicitly in addition to other computation goals. If it is set, implicitly
or explicitly, Normaliz will not complain about unreachable computation goals.

78

4.2. Computation goals

The computation goal Sublattice does not imply any other computation goal. Most other
computation goals include Sublattice and SupportHyperplanes. The exceptions are:

(1) certain computations based on the dual algorithm see Section 4.6;
(2) Projection or ProjectionFloat applied to parallelotopes; see Section 4.6;
(3) computations done completely by symmetrization or signed decomposition.

If you are in doubt whether your desired data will be computed, add an explicit computation
goal.

4.2.1. Lattice data

Sublattice, -S (upper case S) asks Normaliz to compute the coordinate transformation to
and from the efficient sublattice.

4.2.2. Support hyperplanes and extreme rays

SupportHyperplanes, -s triggers the computation of support hyperplanes and extreme rays.

Normaliz tries to find a grading in the homogeneous case.

VerticesFloat converts the format of the vertices to floating point. It implies SupportHyperplanes.

SuppHypsFloat converts the format of the support hyperplanes to floating point. It implies
SupportHyperplanes.

ExtremeRaysFloat does the same for the extreme rays.

Note that VerticesFloat and SuppHypsFloat are not pure output options. They are computa-
tion goals, and therefore break implicit DefaultMode.

ProjectCone Normaliz projects the cone defined by the input data onto a subspace generated
by selected coordinate vectors and computes the image with the goal SupportHyperplanes.

4.2.3. Hilbert basis and lattice points

HilbertBasis, -N triggers the computation of the Hilbert basis. In inhomogeneous compu-
tations it asks for the Hilbert basis of the recession monoid and the module generators.

WitnessNotIntegrallyClosed, W With this option, Normaliz stops the Hilbert basis compu-
tation as soon it has found a witness confirming that the original monoid is not integrally
closed.

Deg1Elements, -1 restricts the computation to the degree 1 elements of the Hilbert basis in
homogeneous computations (where it requires the presence of a grading).

LatticePoints is identical to Deg1Elements in the homogeneous case, but implies NoGradingDenom.
In inhomogeneous computations it is a synonym for HilbertBasis.

79

ModuleGeneratorsOverOriginalMonoid, -M computes a minimal system of generators of
the integral closure over the original monoid (see Section 6.18). Requires the existence
of original monoid generators.

The boolean valued computation goal IsIntegrallyClosed is also related to the Hilbert basis;
see Section 4.2.13.

4.2.4. Enumerative data

The computation goals in this section require a grading. They include SupportHyperplanes.

HilbertSeries,-q triggers the computation of the Hilbert series.
EhrhartSeries computes the Ehrhart series of a polytope, regardless of whether it is defined

by homogeneous or inhomogeneous input. In the homogeneous case it is equivalent
to HilbertSeries + NoGradingDenom, but not in the inhomogeneous case. See the
discussion in Section 6.1. Can be combined with HSOP.

Multiplicity, -v restricts the computation to the multiplicity.
Volume, -V computes the lattice normalized and the Euclidean volume of a polytope given

by homogeneous or inhomogeneous input (implies Multiplicity in the homogeneous
case, but also sets NoGradingDenom).

HSOP lets Normaliz compute the degrees in a homogeneous system of parameters and the
induced representation of the Hilbert or Ehrhart series series. Note that HSOP does not
imply HilbertSeries or EhrhartSeries.

NoPeriodBound This option removes the period bound that Normaliz sets for the computation
of the Hilbert quasipolynomial (presently 106).

NumberLatticePoints finds the number of lattice points. They are not stored.

4.2.5. Combined computation goals

Can only be set by single letter command line options:

-n HilbertBasis + Multiplicity

-h HilbertBasis + HilbertSeries

-p Deg1Elements + HilbertSeries

4.2.6. The class group

ClassGroup, -C is self explanatory, includes SupportHyperplanes. Not allowed in inhomo-
geneous computations.

4.2.7. Integer hull

IntegerHull, -H computes the integer hull of a polyhedron. Implies the computation of the
lattice points in it.

80

More precisely: in homogeneous computations it implies Deg1Elements, in inhomogeneous
computations it implies HilbertBasis. See Section 2.14.

4.2.8. Triangulation and Stanley decomposition

Triangulation, -T makes Normaliz compute, store and export the full triangulation.
ConeDecomposition, -D Normaliz computes a disjoint decomposition of the cone into semi-

open simplicial cones. Implies Triangulation.
TriangulationSize, -t makes Normaliz count the simplicial cones in the full triangulation.
TriangulationDetSum makes Normaliz additionally sum the absolute values of their deter-

minants.
StanleyDec, -y makes Normaliz compute, store and export the Stanley decomposition.
AllGeneratorsTriangulation makes Normaliz compute and store a triangulation that uses

all generators.
LatticePointTriangulation makes Normaliz compute and store a triangulation that uses all

lattice points in a polytope.
UnimodularTriangulation makes Normaliz compute and store a unimodular triangulation.

The triangulation and the Stanley decomposition are treated separately since they can become
very large and may exhaust memory if they must be stored for output.

Note that these decompositions cannot be computed for a polyhedron that is unbounded (mod-
ulo its maximal subspace). However, they are allowed for polytopes defined by inhomoge-
neous input. UnimodularTriangulation is only allowed in homogeneous computations and
is excluded for algebraic polyhedra.

The following triangulations are defined by the order of the generators. See SEctions 6.15.5
and 6.15.6.

PlacingTriangulation

PullingTriangulation

4.2.9. Face structure

The f-vector of a polyhedron is computed by

FVector

The set of faces of a polyhedron is computed by

FaceLattice

Like the triangulation or Stanley decomposition the face lattice can become very large, and it
is already computed with FVector. FaceLattice writes an extra output file. The details of its
representation in the extra output file are discussed in Section 6.17.

The face lattice computation is based on the incidence vectors of the facets. It is possible to
retrieve this matrix (independently of FVector or FaceLattice) via the computation goal

Incidence

81

Section 6.17 as well. See it also for the dual versions

DualFVector

DualFaceLattice

DualIncidence

4.2.10. Semiopen polyhedra

IsEmptySemiopen

asks for the emptiness of a semiopen polyhedron. See Section 6.20.

4.2.11. Automorphism groups

Automorphism groups are defined in Section 6.22.

Automorphisms computes the integral automorphisms of rational polyhedra and the algebraic
automorphisms of algebraic polytopes.

RationalAutomorphisms computes the rational automorphisms of rational polytopes.
EuclideanAutomorphisms computes the euclidean automorphisms of rational and algebraic

polytopes.
CombinatorialAutomorphisms computes ate combinatorial automorphisms of polyhedra.
AmbientAutomorphisms computes automorphisms induce by permutations of coordinates of

the ambient space.
InputAutomorphisms computes taional (or algebraic) automorphisms based solely on the in-

put and initial coordinate transformations.

4.2.12. Weighted Ehrhart series and integrals

WeightedEhrhartSeries, -E makes Normaliz compute a generalized Ehrhart series.
VirtualMultiplicity, -L makes Normaliz compute the virtual multiplicity of a weighted

Ehrhart series.
Integral, -I makes Normaliz compute an integral over a polytope. Implies NoGradingDenom.

These computation goals require a homogeneous computation.

Don’t confuse these options with symmetrization. The latter symmetrizes (if possible) the
given data and uses -E or -L internally on the symmetrized object. The options -E,-I,-L ask
for the input of a polynomial. See Section 3.1.8.

4.2.13. Boolean valued computation goals

They tell Normaliz to find out the answers to the questions they ask. Two of them are more
important than the others since they may influence the course of the computations:

82

IsIntegrallyClosed, -w : is the original monoid integrally closed? Normaliz stops the
Hilbert basis computation as soon as it can decide whether the original monoid contains
the Hilbert basis (see Section 2.11.1). Normaliz tries to find the answer as quickly as
possible. This may include the computation of a witness, but not necessarily. If you
need a witness, use WitnessNotIntegrallyClosed.

IsPointed : is the efficient cone C pointed? This computation goal is sometimes useful to
give Normaliz a hint that a nonpointed cone is to be expected. See Section 6.13.3.

For the following we only need the support hyperplanes and the lattice:

IsGorenstein, -G : is the monoid of lattice points Gorenstein? In addition to answering
this question, Normaliz also computes the generator of the interior of the monoid (the
canonical module) if the monoid is Gorenstein. (Only in homogeneous computations.)

The remaining ones:

IsDeg1ExtremeRays : do the extreme rays have degree 1? (Only in homogeneous computa-
tions.)

IsDeg1HilbertBasis : do the Hilbert basis elements have degree 1? (Only in homogeneous
computations.)

IsReesPrimary : for the input type rees_algebra, is the monomial ideal primary to the irrel-
evant maximal ideal?

The last three computation goals are not really useful for Normaliz since they will be answered
automatically. Note that they may trigger extensive computations.

4.3. Integer type

There is no need to worry about the integer type chosen by Normaliz. All preparatory com-
putations use infinite precision. The main computation is then tried with 64 bit integers. If it
fails, it will be restarted with infinite precision.

Infinite precision does not mean that overflows are completely impossible. In fact, Normaliz
requires numbers of type “degree” fit the type long (typically 64 bit on 64 bit systems). If an
overflow occurs in the computation of such a number, it cannot be remedied.

The amount of computations done with infinite precision is usually very small, but the trans-
formation of the computation results from 64 bit integers to infinite precision may take some
time. If you need the highest possible speed, you can suppress infinite precision completely
by

LongLong

With this option, Normaliz cannot restart a failed computation.

On the other hand, the 64 bit attempt can be bypassed by

BigInt, -B

Note that Normaliz tries to avoid overflows by intermediate results (even if LongLong is set).
If such overflow should happen, the computation is repeated locally with infinite precision.
(The number of such GMP transitions is shown in the terminal output.) If a final result is too

83

large, Normaliz must restart the computation globally.

LongLong is not a cone property.

Caveat. The overflow check of Normaliz is not an absolute guarantee. The probability that it
fails is microscopically small, but failure is not totally excluded. Very critical computations
for which one has no other confirmation should be redone in BigInt.

4.4. The choice of algorithmic variants

For its main computation goals Normaliz has algorithmic variants. It tries to choose the variant
that seems best for the given input data. This automatic choice may however be a bad one.
Therefore the user can completely control which algorithmic variant is used.

4.4.1. Primal vs. dual

For the computation of Hilbert bases Normaliz has two algorithms, the primal algorithm that
is based on triangulations, and the dual algorithm that is of type “pair completion”. We have
seen both in Section 2. Roughly speaking, the primal algorithm is the first choice for generator
input, and the dual algorithm is usually better for constraints input. The choice also applies to
the computation of degree 1 elements. However, for them the default choice is project-and-lift
(well, almost always). See Section 6.2.1. The conditions under which the dual algorithm is
chosen are specified in Section 6.5.

The choice of the algorithm can be fixed or blocked:

DualMode, -d activates the dual algorithm for the computation of the Hilbert basis and de-
gree 1 elements. Includes HilbertBasis, unless Deg1Elements is set. It overrules
IsIntegrallyClosed.

PrimalMode, -P blocks the use of the dual algorithm.

The automatic choice can of course fail. See Section 6.5 for an example for which it is bad.

4.4.2. Lattice points in polytopes

For this task Normaliz has several methods. They are discussed in Section 6.2. The default
choice is the project-and-lift algorithm. It can be chosen explicitly:

Projection, -j

NoProjection blocks it.

Alternative choices are

ProjectionFloat, -J , project-and-lift with floating point arithmetic,
PrimalMode, -P , triangulation based method,
Approximate, -r , approximation of rational polytopes followed by triangulation and
DualMode, -d , dual algorithm.

84

Note: none of these algorithmic variants implies the computation of the lattice points. They
must be asked for by a computation goal.

The following options modify Projection and ProjectionFloat:

NoLLL blocks the use of LLL reduced coordinates,
NoRelax blocks relaxation.

Both LLL and relaxation are switched on by default. See Section 6.2.3.

4.4.3. Bottom decomposition and order

Bottom decomposition is a way to produce an optimal triangulation for a given set of genera-
tors. It is discussed in Section 6.3. The criterion for its automatic choice is explained there. It
can be forced or blocked:

BottomDecomposition, -b tells Normaliz to use bottom decomposition in the primal algo-
rithm.

NoBottomDec, -o forbids Normaliz to use bottom decomposition in the primal algorithm,
even if it would otherwise be chosen because of large roughness (see Section 6.3).

An option to be mentioned in this context is

KeepOrder, -k forces Normaliz to insert the generators (for generator input) or the inequal-
ities (for constraint input) in the input order. This optio is useful if the input has been
produced in a systematic order that would be destroyed by the degree-lexicogrpahic
order applied by Normaliz. Also blocks BottomDecomposition.

4.4.4. Multiplicity, volume and integrals

For the computation of multiplicities Normaliz offers has three main algorithms:

(1) the computation and evaluation of a full triangulation,
(2) descent in the face lattice,
(3) signed decomposition.

These are described in more detail in Section 6.6. Moreover, one can use symmetrization (see
below), and (2) has a variant using isomorphism types.

Normaliz tries them by default in the order signed decoposition, descent, symmetritation and
uses the first for which the default conditions are satisfied (as long as ther is no need to compute
a full triangulation for other reasons). The last resort is (1).

The options asking explicitly for an algorithm or excluding it are

Descent, -F

NoDescent

SignedDec

NoSignedDec

The variant using isomorphism types can be activated by

85

Descent ExploitIsosMult

You van ask for

StrictTypeChecking

if you don’t btrust SHA256 hash values. See Section 6.6.3.

Another option to be mentioned in this context is

FixedPrecision

It can be applied if the multiplicity is computed by signed decomposition. See Section 6.6.5

For integrals one can chose either the standard triangulation or signed decomposition. In the
latter case FixedPrecision is also available.

If one wants to compute multiplicities (or volumes) with signed decomposition, it is possible
to split the most time consuming part of the computation into blocks that can be processed
independently of each other. It can be asked for by the option

DistributedComp

Distributed computation is described in Appendix F.

4.4.5. Symmetrization

In rare cases Normaliz can use symmetrization in the computation of multiplicities or Hilbert
series. If applicable, this is a very strong tool. We have mentioned it in Section 2.10 and will
discuss it in Section 6.8. It will be chosen automatically, but can also be forced or blocked:

Symmetrize, -Y lets Normaliz compute the multiplicity and/or the Hilbert series via sym-
metrization (or just compute the symmetrized cone).

NoSymmetrization, -X blocks symmetrization.

The integration involved in symmetrization can be done by signed decomposition.

4.4.6. Subdivision of simplicial cones

Subdivision requires enlarging the set of generators and can lead to a nested triangulation (see
Sections 6.4 and 6.14.1). The subdivision can be blocked by

NoSubdivision

4.4.7. Options for the grading

By setting

NoGradingDenom

you can force Normaliz not to change the original grading if it would otherwise divide it
by the grading denominator. It is implied by several computation goals for polytopes. See
Section 6.1.

86

NoGradingDenom is set automatically inn inhomogeneous computations.

By

GradingIsPositive

the user guarantees that the grading is positive. This option can be useful in rare cases if
Normaliz would otherwise compute extreme rays only to check the positivity of the grading.

4.5. Control of computations and communication with interfaces

In addition to the computation goals in Section 4.2, the following elements of ConeProperties
control the work flow in libnormaliz and can be used by programs calling Normaliz to ensure
the availability of the data that are controlled by them.

OriginalMonoidGenerators controls the generators of the original monoid.
ModuleGenerators controls the module generators in inhomogeneous computation.
ExtremeRays controls the extreme rays.
VerticesOfPolyhedron controls the vertices of the polyhedron in the inhomogeneous case.
MaximalSubspace controls the maximal linear subspace of the (homogenized) cone.
EmbeddingDim controls the embedding dimension.
Rank controls the rank.
RecessionRank controls the rank of the recession monoid in inhomogeneous computations.
AffineDim controls the affine dimension of the polyhedron in inhomogeneous computations.
ModuleRank in inhomogeneous computations it controls the rank of the module of lattice

points in the polyhedron as a module over the recession monoid.
ExcludedFaces controls the excluded faces.
InclusionExclusionData controls data derived from the excluded faces.
Grading controls the grading.
GradingDenom controls its denominator.
Dehomogenization controls the dehomogenization.
ReesPrimaryMultiplicity controls the multiplicity of a monomial ideal, provided it is pri-

mary to the maximal ideal generated by the indeterminates. Used only with the input
type rees_algebra.

EuclideanVolume controls the Euclidean volume.
GeneratorOfInterior controls the generator of the interior if the monoid is Gorenstein.
CoveringFace asks for an excluded face making the semiopen polyhedron empty.
Equations controls the equations.
Congruences controls the congruences.
ExternalIndex controls the external index.
InternalIndex controls the internal index.
UnitGroupIndex controls the unit group index.
IsInhomogeneous controls the inhomogeneous case.
HilbertQuasiPolynomial controls the Hilbert quasipolynomial.

87

EhrhartQuasiPolynomial controls the Ehrhart quasipolynomial.
WeightedEhrhartQuasiPolynomial controls the weighted Ehrhart quasipolynomial.
IsTriangulationNested controls the indicator of this property.
IsTriangulationPartial similar.

4.6. Rational and integer solutions in the inhomogeneous case

The integer solutions of a homogeneous diophantine system generate the rational solutions as
well: every rational solution has a multiple that is an integer solution. Therefore the rational
solutions do not need an extra computation. If you prefer geometric language: a rational cone
is generated by its lattice points.

This is no longer true in the inhomogeneous case where the computation of the rational solu-
tions is an extra task for Normaliz. This extra step is inevitable for the primal algorithm, but
not for the dual algorithm. In general, the computation of the rational solutions is much faster
than the computation of the integral solutions, but this by no means always the case.

Therefore we have decoupled the two computations if the dual algorithm is applied to inho-
mogeneous systems or to the computation of degree 1 points in the homogeneous case. The
combinations

DualMode HilbertBasis, -dN

DualMode Deg1Elements, -d1

DualMode ModuleGenerators

DualMode LatticePoints

do not imply the computation goal SupportHyperplanes (and not even Sublattice) which
would trigger the computation of the rational solutions (geometrically: the vertices of the
polyhedron). If you want to compute them, you must add one of

SupportHyperplanes, -s

ExtremeRays

VerticesOfPolyhedron

The last choice is only possible in the inhomogeneous case. Another possibility in the inho-
mogeneous case is is to use DualMode without a restriction.

If Projection or ProjectionFloat is used for parallelotopes defined by inequalities, then
Normaliz does not compute the vertices, unless asked for by one of the three computation
goals just mentioned or the extreme rays are needed for some other computation. The same
holds if the volume of a parallelotope is computed.

5. Running Normaliz

The standard form for calling Normaliz is

normaliz [options] <project>

88

where <project> is the name of the project, and the corresponding input file is <project>.in.
Note that normaliz may require to be prefixed by a path name, and the same applies to
<project>. A typical example on a Linux or Mac system:

./normaliz --verbose -x=5 example/big

that for MS Windows must be converted to

.\normaliz --verbose -x=5 example\big

Normaliz uses the standard conventions for calls from the command line:

(1) the order of the arguments on the command line is arbitrary.
(2) Single letter options are prefixed by the character - and can be grouped into one string.
(3) Verbatim options are prefixed by the characters --.

The options for computation goals and algorithmic variants have been described in Section 4.
In this section the remaining options for the control of execution and output are discussed,
together with some basic rules for the use of the options.

5.1. Basic rules

The options for computation goals and algorithms variants have been explained in Section 4.
The options that control the execution and the amount of output will be explained in the
following. Basic rules for the use of options:

1. If no <project> is given, the program will terminate.

2. The option -x differs from the other ones: <T> in -x=<T> represents a positive number
assigned to -x; see Section 5.3.

3. Similarly the option --OutputDir=<outdir> sets the output directory; see 5.5.

4. Normaliz will look for <project>.in as input file.

If you inadvertently typed rafa2416.in as the project name, then Normaliz will first
look for rafa2416.in.in as the input file. If this file doesn’t exist, rafa2416.in will be
loaded.

5. The options can be given in arbitrary order. All options, including those in the input
file, are accumulated, and syntactically there is no mutual exclusion. However, some
options may block others during the computation. For example, KeepOrder blocks
BottomDecomposition.

6. If Normaliz cannot perform a computation explicitly asked for by the user, it will termi-
nate. Typically this happens if no grading is given although it is necessary.

7. In the options include DefaultMode, Normaliz does not complain about missing data
(anymore). It will simply omit those computations that are impossible.

8. If a certain type of computation is not asked for explicitly, but can painlessly be produced
as a side effect, Normaliz will compute it. For example, as soon as a grading is present
and the Hilbert basis is computed, the degree 1 elements of the Hilbert basis are selected
from it.

89

5.2. Info about Normaliz

--help, -? displays a help screen listing the Normaliz options.
--version displays information about the Normaliz executable.

5.3. Control of execution

The options that control the execution are:

--verbose, -c activates the verbose (“console”) behavior of Normaliz in which Normaliz
writes additional information about its current activities to the standard output.

-x=<T> Here <T> stands for a positive integer limiting the number of threads that Normaliz is
allowed access on your system. The default value is 8. (Your operating system may set
a lower limit).
-x=0 switches off the limit set by Normaliz.
If you want to run Normaliz in a strictly serial mode, choose -x=1.

The number of threads can also be controlled by the environment variable OMP_NUM_THREADS.
See Section 9.1 for further discussion.

5.4. Interruption

During a computation normaliz can be interrupted by pressing Ctrl-C on the keyboard. If this
happens, Normaliz will stop the current computation and write the already computed data to
the output file(s).

If Ctrl-C is pressed during the output phase, Normaliz is stopped immediately.

5.5. Control of output files

In the default setting Normaliz writes only the output file <project>.out (and the files pro-
duced by Triangulation, StanleyDec and FaceLattice). The amount of output files can be
increased as follows:

--files, -f Normaliz writes the additional output files with suffixes gen, cst, and inv, pro-
vided the data of these files have been computed.

--all-files, -a includes Files, Normaliz writes all available output files (except typ, the
face lattice, the triangulation or the Stanley decomposition, unless these have been re-
quested).

--<suffix> chooses the output file with suffix <suffix>.

For the list of potential output files, their suffixes and their interpretation see Section 8. There
are several options --<suffix>.

If the computation goal IntegerHull is set, Normaliz computes a second cone and lattice.
The output is contained in <project>.IntHull.out. The options for the output of <project>

90

are applied to <project>.IntHull as well. There is no way to control the output of the two
computations individually.

Similarly, if symmetrization has been used, Normaliz writes the file <project>.symm.out. It
contains the data of the symmetrized cone.

Sometimes one wants the output to be written to another directory. The output directory can
be set by

--OutputDir=<outdir> . The path <outdir> is an absolute path or a path relative to the
current directory (which is not necessarily the directory of <project>.in.)

Note that all output files will be written to the chosen directory. It must be created before
Normaliz is started.

Extreme rays and vertices may have very long integer coordinates. One can suppress their
output by

NoExtRaysOutput

For similar reasons one may want to suppress the output of support hyperplanes, namely by

NoSuppHypsOutput

Similarly,

NoHilbertBasisOutput

supprsesses thze output of Hilbert bases and latticec points. An even more drastic option is

NoMatricesOutput

It suppresses all output after the “preamble”. It is useful in testing large examples where the
numbers of extreme rays, lattice points etc. are usually a good criterion for correctness.

NoExtRaysOutput, NoSuppHypsOutputand NoMatricesOutput are not cone properties.

5.6. Ignoring the options in the input file

Since Normaliz accumulates options, one cannot get rid of settings in the input file by com-
mand line options unless one uses

--ignore, -i This option disables all options in the input file.

6. Advanced topics

6.1. Computations with a polytope

In many cases the starting point of a computation is a polytope, i.e., a bounded polyhedron –
and not a cone or monoid. Normaliz offers two types of input for polytopes that allow almost
the same computations, namely

(1) homogeneous input type for which the polytope is the intersection of a cone with a

91

hyperplane defined by the grading (automatically bounded): P = {x ∈C : degx = 1}.
(2) inhomogeneous input defining a polytope (and not an unbounded polyhedron).

A problem that can arise with homogeneous input is the appearance of a grading enumerator
g > 1. In this case the polytope P defined by the input grading is replaced by gP. This may be
undesirable and can therefore be blocked by NoGradingDenom. Note: a grading denominator
g > 1 can only appear if the affine space spanned by the polytope does not contain a lattice
point. This is a rare situation, but nevertheless you may want to safeguard against it.

Computation goals whose names have a “polytopal touch” (as opposed to “algebraic touch”)
set NoGradingDenom automatically. These computation goals are also to be used with in-
homogeneous input; see the following table. The homogeneous input type polytope sets
NoGradingDenom as well.

In the following table L is the lattice of reference defined by the input data.

inhom input or hom input
desired data hom input blocking allowing

grading denominator grading denominator
lattice points LatticePoints Deg1Elements

number of lattice points NumberLatticePoints —
convex hull of
lattice points IntegerHull —

generating function of
k 7→ #(kP∩L) EhrhartSeries HilbertSeries

volume or
multiplicity Volume Multiplicity

integral Integral —

Note that HilbertSeries and Multiplicity make also sense with inhomogeneous input, but
they refer to a different counting function, namely

k 7→ #(x ∈ P∩L,degx = k).

Even if P is a polytope, this function has applications; see Section 6.10.2. Note that inhomo-
geneous input sets NoGradingDenom.

6.1.1. Lattice normalized and Euclidean volume

As just mentioned, for polytopes defined by homogeneous input Normaliz has two computa-
tion goals, Multiplicity, -v, and Volume, -V, that are almost identical: Volume = Multiplicity

+ NoGradingDenom. Both compute the lattice normalized volume; moreover, Volume addi-
tionally computes the Euclidean volume and can also be used with inhomogeneous input, for
which Multiplicity has a different meaning. (For the algebraic origin of Multiplicity see
Appendix A.7.)

92

In the following we want to clarify the notion of lattice normalized volume.

(1) Let P ⊂ Rd be a polytope of dimension r and let A be the affine subspace spanned by
P. Then the Euclidean volume voleucl(P) of P is computed with respect to the r-dimensional
Lebesgue measure in which an r-dimensional cube in A of edge length 1 has measure 1.

(2) For the lattice normalized volume we need a lattice L of reference. We assume that
aff(P) ⊂ aff(L). (It would be enough to have this inclusion after a parallel translation of
aff(P).) Choosing the origin in L, one can assume that aff(L) is a vector subspace of Rd so
that we can identify it with Rd after changing d if necessary. After a coordinate transfor-
mation we can further assume that L = Zd (in general this is not an orthogonal change of
coordinates!). To continue we need that aff(P) is a rational subspace. There exists k ∈ N such
that k aff(P) contains a lattice simplex. The lattice normalized volume volL of kP is then given
by the Lebesgue measure on k aff(P) in which the smallest possible lattice simplex in k aff(P)
has volume 1. Finally we set volL(P) = volL(kP)/kr where r = dim(P).

If P is a full-dimensional polytope in Rd and L = Zd , then volL(P) = d!voleucl(P), but in gen-
eral the correction factor is cr! with c depending on aff(P): the line segment in R2 connecting
(1,0) and (0,1) has euclidean length

√
2, but lattice normalized volume 1. As this simple

example shows, c can be irrational.

6.1.2. Developer’s choice: homogeneous input

Our recommendation: if you have the choice between homogeneous and inhomogeneous in-
put, go homogeneous (with NoGradingDenom if necessary). You do not lose any computation
goal and can only gain efficiency.

6.2. Lattice points in polytopes once more

Normaliz has three main algorithms for the computation of lattice points of which two have
two variants each:

(1) the project-and-lift algorithm (Projection, -j),
(2) its variant using floating point arithmetic (ProjectionFloat, -J),
(3) the triangulation based Normaliz primal algorithm specialized to lattice points

(PrimalMode, -P),
(4) its variant using approximation of rational polytopes (Approximate, -r),
(5) the dual algorithm specialized to lattice points (DualMode, -d).

The options Projection, ProjectionFloat and Approximate do not imply a computation
goal. Since PrimalMode can also be used for the computation of Hilbert series and Hilbert
bases, one must add the computation goal to it. In the homogeneous case one must add the
computation goal also to DualMode.

Remark. The triangulation based primal algorithm and the dual algorithm do not depend on
the embedding of the computed objects into the ambient space since they use only data that
are invariant under coordinate transformations. This is not true for project-and-lift and the ap-

93

proximation discussed below. Often Projection and ProjectionFloat (and in certain cases
also PrimalMode) profit significantly from LLL reduced coordinates (since version 3.4.1). We
discuss this feature in Section 6.2.3.

We recommend the reader to experiment with the following input files:

• 5x5.in

• 6x6.in

• max_polytope_cand.in

• hickerson-18.in

• knapsack_11_60.in

• ChF_2_64.in

• ChF_8_1024.in

• VdM_16_1048576.in (may take some time)
• pedro2.in

In certain cases you must use -i on the command line to override the options in the input file.

max_polytope_cand.in came up in connection with the paper “Quantum jumps of normal
polytopes” by W. Bruns, J. Gubeladze and M. Michałek, Discrete Comput. Geom. 56 (2016),
no. 1, 181–215. hickerson-18.in is taken from the LattE distribution [3]. pedro2.in was
suggested by P. Garcia-Sanchez.

The files ChF*.in and VdM*.in are taken from the paper “On the orthogonality of the Chebyshev-
Frolov lattice and applications” by Ch. Kacwin, J. Oettershagen and T. Ullrich (Monatsh.
Math. 184 (2017), 425–441). The file VdM_16_1048576.in is based on the linear map given
directly by the Vandermonde matrix. A major point of the paper is a coordinate transformation
that simplifies computations significantly, and the files ChF*.in are based on it.

6.2.1. Project-and-lift

We have explained the project-and-lift algorithm in Section 2.13. This algorithm is very robust
arithmetically since it needs not compute determinants or solve systems of linear equations.
Moreover, the project-and-lift algorithm itself does not use the vertices of the polytope explic-
itly and only computes lattice points in P and its successive projections. Therefore it is rather
insensitive against rational vertices with large denominators. (To get started it must usually
compute the vertices of the input polytope; an exception are parallelotopes, as mentioned in
Section 2.13 and discussed below.) Project-and-lift is not done by default if the number of
support hyperplanes exceeds that of the number of extreme rays by a factor > 100.

The option for project-and-lift is

Projection, -j

There are two complications that may slow it down unexpectedly: (i) the projections may
have large numbers of support hyperplanes, as seen in the example VdM_16_1048576.in (it
uses floating point arithmetic in the lifting part):

Projection

94

embdim 17 inequalities 32

embdim 16 inequalities 240

...

embdim 11 inequalities 22880

embdim 10 inequalities 25740

embdim 9 inequalities 22880

...

embdim 3 inequalities 32

embdim 2 inequalities 2

(ii) The projections may have many lattice points that cannot be lifted to the top. As an
example we look at the terminal output of pedro2.in:

embdim 2 LatticePoints 40

embdim 3 LatticePoints 575

embdim 4 LatticePoints 6698

embdim 5 LatticePoints 6698

embdim 6 LatticePoints 2

Despite of these potential problems, Projection is the default choice of Normaliz for the
computation of lattice points (if not combined with Hilbert series or Hilbert basis). If you
do not want to use it, you must either choose another method explicitly or switch it off by
NoProjection. Especially for lattice polytopes with few extreme rays, but many support hy-
perplanes the triangulation base algorithm is often the better choice.

Parallelotopes. Lattice points in parallelotopes that are defined by inequalities, like those in
the input files VdM*.in, can be computed without any knowledge of the vertices. In fact, for
them it is favorable to present a face F by the list of facets whose intersection F is (and not
by the list of the 2dimF vertices of F!). Parallelotopes are not only simple polytopes. It is
important that two faces do not intersect if and only if they are contained in parallel facets,
and this is easy to control. Normaliz recognizes parallelotopes by itself, and suppresses the
computation of the vertices unless asked to compute them.

6.2.2. Project-and-lift with floating point arithmetic

Especially the input of floating point numbers often forces Normaliz into GMP arithmetic.
Since GMP arithmetic is slow (compared to arithmetic with machine integers or floating point
numbers), Normaliz has a floating point variant of the project-and-lift algorithm. (Such an
algorithm makes no sense for Hilbert bases or Hilbert series.) It behaves very well, even in
computations for lower dimensional polytopes. We have not found a single deviation from the
results with GMP arithmetic in our examples. Nevertheless, the projection phase is done in
the in integer arithmetic, and only the lifting uses floating point.

The option for the floating point variant of project-and-lift is

ProjectionFloat, -J

If you want a clear demonstration of the difference between Projection and ProjectionFloat,

95

try VdM_16_1048576.in.

The use of ProjectionFloat or any other algorithmic variant is independent of the input type.
The coordinates of the lattice points computed by ProjectionFloat are assumed to be at
most 64 bits wide, independently of the surrounding integer type. If this condition should not
be satisfied in your application, you must use Projection instead.

6.2.3. LLL reduced coordinates and relaxation

The project-and-lift algorithm depends very much on the embedding of the polytope in the
ambient space. We use LLL reduction to find coordinate transformations of the ambient space
in which the vertices of the polytope have small coordinates so that the successive projections
have few lattice points. Roughly speaking, LLL reduced coordinates are computed as follows.
We form a matrix A whose rows are the vertices or the support hyperplanes of the polytope,
depending on the situation. Suppose A has d columns; A need not have integral entries, but
it must have rank d. Then we apply LLL reduction to the lattice generated by the columns
of A. This amounts to finding a matrix U ∈ GL(d,Z) such that the columns of AU are short
vectors (in the Euclidean norm). The matrix U and its inverse then define the coordinate
transformations forth and back.

Often LLL reduction has a stunning effect. We have a look at the terminal output of pedro2.in
run with -P. The left column shows the present version, the right one is produced by Nor-
maliz 3.4.0:

embdim 2 LatticePoints 2 embdim 2 LatticePoints 40

embdim 3 LatticePoints 2 embdim 3 LatticePoints 672

embdim 4 LatticePoints 2 embdim 4 LatticePoints 6698

embdim 5 LatticePoints 3 embdim 5 LatticePoints 82616047

embdim 6 LatticePoints 2 embdim 6 LatticePoints 2

We have no example for which LLL increases the computation time. Though its application
not seem to be a real disadvantage, it can be switched off for Projection and ProjectionFloat

by

NoLLL

Without LLL certain computations are simply impossible – just try VdM_16_1048576 with
NoLLL. (This option is used internally to avoid a repetition of LLL computations.)

We use the original LLL original algorithm with the factor 0.9.

Another aspect of the implementation that must be mentioned is the relaxation of inequalities:
for the intermediate lifting of lattice points Normaliz uses at most 1000 (carefully chosen)
inequalities. Some additional intermediate lattice points are acceptable if the evaluation of
inequalities is reduced by a substantial factor. On the left we see VdM_16_1048576 with relax-
ation, on the right without:

... ...

embdim 6 LatticePoints 2653 embdim 6 LatticePoints 2297

... ...

96

embdim 10 LatticePoints 431039 embdim 10 LatticePoints 128385

embdim 11 LatticePoints 1031859 embdim 11 LatticePoints 277859

embdim 12 LatticePoints 2016708 embdim 12 LatticePoints 511507

embdim 13 LatticePoints 2307669 embdim 13 LatticePoints 806301

... ...

No surprise that relaxation increases the number of intermediate lattice points, but it reduces
the computation time by about a factor 2.

It is of course not impossible that relaxation exhausts RAM or extends the computation time.
Therefore one can switch it off by

NoRelax

6.2.4. The triangulation based primal algorithm

With this algorithm, Normaliz computes a partial triangulation as it does for the computation
of Hilbert bases (in primal mode) for the cone over the polytope. Then it computes the lattice
points in each of the subpolytopes defined by the simplicial subcones in the triangulation. The
difference to the Hilbert basis calculation is that all points that do not lie in our polytope P can
be discarded right away and that no reduction is necessary.

The complications that can arise are (i) a large triangulation or (ii) large determinants of the
simplicial cones. Normaliz tries to keep the triangulations small by restricting itself to a partial
triangulation, but often there is nothing one can do. Normaliz deals with large determinants
by applying project-and-lift to the simplicial subcones with large determinants. We can see
this by looking at the terminal output of max_polytope_cand.in, computed with -cP -x=1:

...

evaluating 49 simplices

||

49 simplices, 819 deg1 vectors accumulated.

47 large simplices stored

Evaluating 47 large simplices

Large simplex 1 / 47

**
starting primal algorithm (only support hyperplanes) ...

Generators sorted lexicographically

Start simplex 1 2 3 4 5

Pointed since graded

Select extreme rays via comparison ... done.

--

transforming data... done.

Computing lattice points by project-and-lift

Projection

embdim 6 inequalities 7

...

embdim 2 inequalities 2

97

Lifting

embdim 2 Deg1Elements 9

...

embdim 6 Deg1Elements 5286

Project-and-lift complete

...

After finishing the 49 “small” simplicial cones, Normaliz takes on the 47 “large” simplicial
cones, and does them by project-and-lift (including LLL). Therefore one can say that Normaliz
takes a hybrid approach to lattice points in primal mode.

An inherent weakness of the triangulation based algorithm is that its efficiency drops with d!
where d is the dimension because the proportion of lattice points in P of all points generated
by the algorithm must be expected to be 1/d! (as long as small simplicial cones are evaluated).
To some extent this is compensated by the extremely fast generation of the candidates.

6.2.5. Lattice points by approximation

Large determinants come up easily for rational polytopes P whose vertices have large denomi-
nators. In previous versions, Normaliz fought against large determinants coming from rational
vertices by finding an integral polytope Q containing P, computing the lattice points in Q and
then sieving out those that are in Q\P:

This approach is still possible. It is requested by the option

Approximate, -r

This is often a good choice, especially in low dimension.

It is not advisable to use approximation for polytopes with a large number of vertices since
it must be expected that the approximation multiplies the number of vertices by dimP+1 so
that it may become difficult to compute the triangulation.

Approximation requires that the grading denominator is equal to 1. If this condition is not
satisfied, primal mode is used.

6.2.6. Lattice points by the dual algorithm

Often the dual algorithm is extremely fast. But it can also degenerate terribly. It is very fast for
6x6.in run with -d1. The primal algorithm or approximation fail miserably. (-1, the default
choice project-and-lift, is also quite good. The difference is that -d1 does not compute the
vertices that in this case are necessary for the preparation of project-and-lift.)

98

On the other hand, the dual algorithm is hopeless already for the 2-dimensional parallelotope
ChF_2_64.in. Try it. It is clear that complicated arithmetic is dangerous for the dual algorithm.
(The dual algorithm successively computes the lattice points correctly for all intermediate
polyhedra, defined as intersections of the half spaces that have been processed so far. The
intermediate polyhedra can be much more difficult than the final polytope, as in this case.)

In certain cases (see Section 6.5) Normaliz will try the dual algorithm if you forbid project-
and-lift by NoProjection.

6.2.7. Counting lattice points

In some applications one is not interested in the lattice points, but only in their number. In this
case you can set the computation goal

NumberLatticePoints

The main advantage is that it does not store the lattice points and therefore cannot fail be-
cause of lack of memory if their number becomes very large. In the inhomogeneous case
NumberLatticePoints can be combined with HilbertSeries. Then the lattice points are
counted by degree. See Section 6.10.2 for an application.

NumberLatticePoints uses project-and-lift (with floating point if ProjectionFloat is set).
Therefore don’t block it. If the number of lattice points is so large that memory becomes a
problem, then the primal and the dual algorithm will most likely not be able to compute them.

6.3. The bottom decomposition

The triangulation size and the determinant sum of the triangulation are critical size parameters
in Normaliz computations. Normaliz always tries to order the generators in such a way that
the determinant sum is close to the minimum, and on the whole this works out well. The use
of the bottom decomposition by BottomDecomposition, -b enables Normaliz to compute a
triangulation with the optimal determinant sum for the given set of generators, as we will
explain in the following.

The determinant sum is independent of the order of the generators of the cone C if they lie in
a hyperplane H. Then the determinant sum is exactly the normalized volume of the polytope
spanned by 0 and C∩H. The triangulation itself depends on the order, but the determinant
sum is constant.

H

C

This observation helps to find a triangulation with minimal determinant sum in the general
case. We look at the bottom (the union of the compact faces) of the polyhedron generated by
x1, . . . ,xn as vertices and C as recession cone, and take the volume underneath the bottom:

99

C

With the option BottomDecomposition, -b, Normaliz computes a triangulation that respects
the bottom facets. This yields the optimal determinant sum for the given generators. If one can
compute the Hilbert basis by the dual algorithm, it can be used as input, and then one obtains
the absolute bottom of the cone, namely the compact facets of the convex hull of all nonzero
lattice points.

Normaliz does not always use the bottom decomposition by default since its computation
requires some time and administrative overhead. However, as soon as the input “profile” is
considered to be “rough” it is invoked. The measure of roughness is the ratio between the
maximum degree (or L1 norm without a grading) and the minimum. A ratio≥ 10 activates the
bottom decomposition.

If you have the impression that the bottom decomposition slows down your computation, you
can suppress it by NoBottomDec, -o.

The bottom decomposition is part of the subdivision of large simplicial cones discussed in the
next section.

The example strictBorda.in belongs to social choice theory like Condorcet.in (see Sec-
tion 2.10), PluralityVsCutoff.in and CondEffPlur.in. The last two profit enormously
from symmetrization (see Section 6.8), but strictBorda.in does not. Therefore we must
compute the Hilbert series for a monoid in dimension 24 whose cone has 6363 extreme rays.
It demonstrates the substantial gain that can be reached by bottom decomposition. Since the
roughness is large enough, Normaliz chooses bottom decomposition automatically, unless we
block it.

algorithm triangulation size determinant sum
bottom decomposition 30,399,162,846 75,933,588,203

standard order of extreme rays, -o 119,787,935,829 401,249,361,966

6.4. Subdivision of large simplicial cones

Especially in computations with rational polytopes one encounters very large determinants that
can keep the Normaliz primal algorithm from terminating in reasonable time. As an example
we take hickerson-18.in from the LattE distribution [3]. It is simplicial and the complexity
is totally determined by the large determinant ≈ 4.17×1014 (computed with -v).

If we are just interested in the degree 1 points, Normaliz uses the project-and-lift method
of Section 6.2.1 and finds 44 degree 1 points in the blink of an eye. If we use these points
together with the extreme rays of the simplicial cone, then the determinant sum decreases to
≈ 1.3×1012, and the computation of the Hilbert basis and the Hilbert series is in reach. But
it is better to pursue the idea of subdividing large simplicial cones systematically. Normaliz

100

uses its own algorithm for finding optimal subdivision points, based on project-and-lift(and
LLL reduced coordinates).

Normaliz tries to subdivide a simplicial cone if it has determinant ≥ 108 or 107 if the Hilbert
basis is computed. Both methods are used recursively via stellar subdivision until simplicial
cones with determinant < 106 have been reached or no further improvement is possible. All
subdivision points are then collected, and the start simplicial cone is subdivided with bottom
decomposition, which in general leads to substantial further improvement.

The following table contains some performance data for subdivisions based on the Normaliz
method (default mode, parallelization with 8 threads).

hickerson-16 hickerson-18 knapsack_11_60

simplex volume 9.83×107 4.17×1014 2.8×1014

stellar determinant sum 3.93×106 9.07×108 1.15×108

volume under bottom 8.10×105 3.86×107 2.02×107

volume used 3.93×106 6.56×107 2.61×107

runtime without subdivision 2.8 s > 12 d > 8 d
runtime with subdivision 0.4 s 24 s 5.1 s

A good nonsimplicial example showing the subdivision at work is hickerson-18plus1.in

with option -q.

Note: After subdivision the decomposition of the cone may no longer be a triangulation in
the strict sense, but a decomposition that we call a nested triangulation; see Section 6.14.1.
If the creation of a nested triangulation must be blocked, one uses the option NoSubdivision.
Inevitably it blocks the subdivision of large simplicial cones.

Remark The bounds mentioned above work well up to dimension ≈ 10. For a fixed determi-
nant, the probability for finding a subdivision point decreases rapidly.

6.5. Primal vs. dual – division of labor

As already mentioned several times, Normaliz has two main algorithms for the computation
of Hilbert bases, the primal algorithm and the dual algorithm. It is in general very hard to
decide beforehand which of the two is better for a specific example. Nevertheless Normaliz
tries to guess, unless PrimalMode, -P or DualMode, -d is explicitly chosen by the user. In first
approximation one can say that the dual algorithm is chosen if the computation is based on
constraints and the number of inequalities is neither too small nor too large. Normaliz chooses
the dual algorithm if at the start of the Hilbert basis computation the cone is defined by s
inequalities such that

r+
50
r
≤ s≤ 2e

where r is the rank of the monoid to be computed and e is the dimension of the space in
which the data are embedded. These conditions are typically fulfilled for diophantine systems

101

of equations whose nonnegative solutions are asked for. In the case of very few or many
hyperplanes Normaliz prefers the primal algorithm. While this combinatorial condition is the
only criterion for Normaliz, it depends also on the arithmetic of the example what algorithm
is better. At present Normaliz makes no attempt to measure it in some way.

When both Hilbert basis and Hilbert series are to be computed, the best solution can be the
combination of both algorithms. We recommend 2equations.in as a demonstration example
which combines the algorithmic variant DualMode and the computation goal HilbertSeries:

amb_space 9

equations 2

1 6 -7 -18 25 -36 6 8 -9

7 -13 15 6 -9 -8 11 12 -2

total_degree

DualMode

HilbertSeries

As you will see, the subdivision of large simplicial cones is very useful for such computations.

Compare 2equations.in and 2equations_default.in for an impression on the relation be-
tween the algorithms.

6.6. Various volume versions

Normaliz offers various algorithms for the volume of a polytope. They all compute the lattice
normalized volume, and additionally convert it to the Euclidean volume. There are 3 basic
algorithms:

(1) the primal volume algorithm: Normaliz computes a lexicograhic triangulation, and finds
the volume as the sum of the volumes of the simplices in the triangulation;

(2) volume by descent in the face lattice: there is a reverse lexicographic triangulation in
the background, but it is not computed explicitly;

(3) volume by signed decomposition: Normaliz computes a triangulation of the dual cone
and converts it into a signed decomposition of the polytope.

For algebraic polytopes only (1) is implemented at present. But (3) could be extended to them,
whereas (2) is not suitable.

By rule of thumb one can say that the best choice is

(1) if the polytope has few vertices, but potentially many facets;
(2) if the number of vertices and the number of facets are of the same order of magnitude;
(3) if there are very few facets and many vertices.

Normaliz tries to choose the optimal algorithm by default. We will illustrate this recommen-
dation by examples below.

There are variants:

(a) exploitation of isomorphism types of faces in the descent algorithm;

102

(b) symmetrization (explained in Section 6.8).

In volume computations that are not part of a Hilbert series computation Normaliz checks the
default conditions of the algorithms in the order

signed decomposition→ descent→ symmetrization

If the default conditions are not satisfied for any of them, the primal triangulation algorithm is
used. These decisions must often be made on the basis of partial information. For example,
the really critical parameter for descent is the number of non-simplicial facets. Therefore it
can be useful to ask for a certain variant explicitly or to exclude the others. The exploitation
of isomorphism types must always be asked for explicitly by the user.

Normaliz recognizes parallelotopes and applies an extremely fast method for their volumes.

We compare computation times for some significant examples in Section 6.6.6. Normaliz
always computes multiplicities of monoids, but we simply talk of volumes in this section.

6.6.1. The primal volume algorithm

It has been used many times in the examples of this manual, and mathematically there is
nothing to say: if a polytope P is decomposed into simplices with non-overlapping interiors,
then its volume is the sum of the volumes of the simplices forming the decomposition.

6.6.2. Volume by descent in the face lattice

The idea is to exploit the formula

mult(P) = ∑
i

htFi(v)mult(Fi)/deg(v).

recursively where v is a vertex of the polytope P with as few opposite facets Fi as possible,
and htFi(v) is the lattice height of v over Fi. The formula is illustrated by the figure:

103

v

F1

F2
F3

F4

The recursive application results in building a subset F of the face lattice so that for each
face F ∈F to which the formula is applied all facets of F that are opposite to the selected
vertex are contained in F . However, if a face is simplicial, its multiplicity is computed by
the standard determinant formula. The algorithm is implemented in such a way that all data
are collected in the descent and no backtracking is necessary. The RAM usage is essentially
determined by the two largest layers. For a detailed discussion we refer the reader to [10].
However, meanwhile many examples disussed in [10] can be computed much faster by signed
decomposition, which is discussed below.

You can force this algorithm is by

Descent, -F

and block it by

NoDescent

Note that Descent does not imply Multiplicity or Volume. (We cannot exclude that in the
future descent is used also for other computations.)

As an example we have a look at lo6 and show part of its terminal output. We look at this
example again when we discuss the variant that exploits isomorphism types.

Command line: -c ../example/lo6 -iv --Descent

Compute: Multiplicity Descent

...

Descent from dim 15, size 854

..

Descent from dim 14, size 7859

..

Descent from dim 13, size 37587

6.6.3. Descent exploiting isomorphism classes of faces

The descent algorithm computes a subset of the face lattice. We can reduce the size of this
“descent system” if we identify faces in it that are isomorphic. In order to have a beneficial
effect on computation time, the reduction must be substantial since the computation of iso-
morphism types is relatively slow. The polytope should at least have a large automorphism

104

group, but this alone is no guarantee for an acceleration. The exploitation of isomorphism
types is asked for by

Descent ExploitIsosMult

It is better to aks for Descent explicity, but ExploitIsosMult will be recognized if Descent
is chosen by default.

This variant is only available if Normaliz has been built with nauty and hash-library. The latter
is used to store the normal forms that take much memory by their SHA256 hash values. But
you can insist on strict type checking by

StrictIsoTypes

We show a little bit of the terminal output for lo6 for which this variant is particularly fast:

Command line: -c ../example/lo6 -iv --Descent --ExploitIsosMult

Compute: Multiplicity Descent ExploitIsosMult

...

Descent from dim 15, size 2

Descent from dim 14, size 232

Collecting isomorphism classes

..

Iso types 5

Descent from dim 13, size 224

Collecting isomorphism classes

...

Compared to Descent without exploitation of isomorphism classes the reduction is indeed
substantial, and is reflected drastically by the computation times.

Using isomorphism types opens descent for polytopes with many facets, but few isomorphism
classes of them.

6.6.4. Volume by signed decomposition

This algorithm uses that a “generic” triangulation of the dual cone induces a “signed decom-
position” of the primal polytope. More precisely: the indicator function of the primal polytope
is the sum of the indicator functions of simplices with appropriate signs.

Let P⊂Rd be a polytope of dimension d (it is important that P is full-dimensional). We realize
P as the intersection of a cone C with the hyperplane H defined by a grading γ: H = {x : γ(x) =
1}. The grading is an interior element of the dual cone C∗ = {λ ∈ (Rd)∗ : λ (x)≥ 0 for all x ∈
C}. In order to visualize the situation we take an auxiliary (irrelevant) cross-section Q of the
dual cone:

105

P Qγ

Now suppose that we have a generic triangulation ∆ of the dual cone where genericity is
defined as follows: γ is not contained in any hyperplane that intersects any δ ∈ ∆ in a facet.
Let δ ∈ ∆ be given, and denote the linear forms on (Rd)∗ defining its facets by `1, . . . `d ∈
(Rd)∗∗ = Rd . (`1, . . . `d are the extreme rays of the dual of δ .) The hyperplanes defined by
the vanishing of `1, . . . `d decompose (Rd)∗ into “orthants” that can be labeled by a sign vector
σ = (s1, . . . ,sd) ∈ {±1}d:

D(δ ,σ) = {α : (−1)si`i(α)≥ 0}.

By the assumption on γ , there is exactly one sign vector σ such that γ lies in the interior of
D(δ ,σ). Consequently the hyperplane H intersects the dual D(δ ,σ)∗ in a polytope Rδ . (We
identify (Rd)∗∗ with Rd .) Furthermore we set e(δ) = |{i : si =−1}|.
Let ιX denote the indicator function of a subset X ⊂ Rd . Then

ιP(x) = ∑
δ∈∆

(−1)e(δ)
ιRδ

(x) (1)

for all x ∈ Rd outside a union of finitely many hyperplanes. Since volume (lattice normalized
or Euclidean) is additive on indicator functions this formula can be used for the computation
of the volume of P. (We give a reference at the end of this section.)

In order to find a generic triangulation, Normaliz first computes a triangulation ∆0 of C∗ and
saves the induced “hollow triangulation” that ∆0 induces on the boundary of C∗. Then it finds
a “generic” element ω ∈C∗ such that the “star” triangulation ∆ of C∗ in which every simplicial
cone is the pyramid with apex ω and base in the hollow triangulation is generic.

P
+

−

−
+ Qγ ω

+

+−

−

Since ω almost inevitably has unpleasantly large coordinates, the polytopes Rδ have even
worse rational vertices, and their volumes usually are rational numbers with very large numer-
ators and denominators. This extreme arithmetical complexity limits the applicability of the
signed decomposition.

Signed decomposition is asked for by

106

SignedDec

and blocked by

NoSignedDec

We show part of the terminal output for strictBorda:

...

Command line: -c ../example/strictBorda

Compute: Multiplicity

Working with dual cone

**
starting full cone computation

Starting primal algorithm with full triangulation ...

...

Computing by signaed decomposition

Making hollow triangulation

...

Size of triangulation 100738

Size of hollow triangulation 324862

Trying to find geric vector

Trying to find generic linear combination of

164 107 65 125 116 66 ... 100

32 130 57 105 108 153 ... 139

...

Must increase coefficients

Trying to find generic linear combination of

270 228 347 407 399 280 ...167

227 362 305 135 354 272 ... 499

Generic with coeff 56 1

Computing multiplicity

Generic 15347 13130 19737 22927 ...9851

...

Mult (before ...) 1281727528...66511/25940255...784000000000

Mult (float) 4.94107527277e-05

The algorithm described in this section has been developed by Lawrence [25] in the language
of linear programming, and [18] describes the floating point implementation in the package
vinci [17]. We have learnt it from Filliman’s paper [19], which contains a proof of equation
(1). See also the references to older literature in [19].

Volume by signed decomposition allows distributed computing. See Appemdix F.

107

6.6.5. Fixed precision for signed decomposition

In very large computations the fractions that arise in the computation of volumes by signed
decomposition can become gigantic (indeed, take gigabytes) so that their handling becomes
impossible. Therefore Normaliz has a fixed precision option for volumes by signed decompo-
sition. This means that the volumes of the simplices in the hollow triangulation are computed
precisely as rational numbers, but are truncated to fixed precision before being added. The
cone property to be used is

FixedPrecision

It defines the precision to be 10−100. Then the precision of the final result is ≤ H ∗ 10−100

where H is the number of simplices in the hollow triangulation. Therefore 10−100 should
suffice for all computations that can be done at present.

If the default value of 100 is too large or too small it can be set by

decimal_digits <N>

in the input file.

We run strictBorda_fixed_prec.in:

amb_space 24

inequalities 9

...

Multiplicity

FixedPrecision

Then the terminal output ends by

Mult (before NoGradingDenom correction) 4941075272...6309/1000000...000000000

Mult (float) 4.94107527277e-05

and in the output file we find

multiplicity (fixed precision) = 4941075...1726309/100000000...00000000000

multiplicity (float) = 4.94107527277e-05

6.6.6. Comparing the algorithms

The computation times in the table were obtained on a compute server with a parallelization
of 32 threads in order to save time for the big computations. The fast ones do not really profit
from it. The optimal time is printed in bold face. If the default choice is different, it is indicted
in italics.

dim #ext #supp signed dec desc iso descent symm symm sd primal
A553 43 75 306955 – 5:48 m – – – 45:35 m
lo6 16 720 910 – 6.0 s 2:16 m – – 18:07 m
cross-24 25 48 224 – 7:59 m 10:43 m – – 7:55 m
CondEffPlur 24 3928 30 0.3 s 2.5 s 0.9 s 6:28 m 31.3 s 41 h
strictBorda 24 6363 33 2.0 s – 26.7 s – – 4:18 h

108

The decision for lo6 is made without knowledge of the unexpectedly small number of support
hyperplanes. This is a design decision of Normaliz: if the primal algorithm should apply, then
it would be time consuming to compute the support hyperplanes beforehand. But in this case
it is the wrong decision.

For A553 it is unpredictable that descent with isomorphism types speeds up the computation
of the volume – one would have at least to compute the automorphism group and see that the
number of orbits of the support hyperplanes is really small.

One would expect that descent with isomomorphism types is very fast for cross-24 since
there is single orbit of support hyperplanes. But it takes time to find this out, and the primal
algorithm is slightly faster.

CondEffPlur illustrates the evolution of volume computations in Normaliz. Though sym-
metrization is not the fastest choice for any of the examples in the table, it remains important
since we have no better algorithm for the computation of the Hilbert series of CondEffPlur
and related examples.

6.7. Checking the Gorenstein property

If the Hilbert series has been computed, one can immediately see whether the monoid com-
puted by Normaliz is Gorenstein: this is the case if and only if the numerator is a symmetric
polynomial, and Normaliz indicates that (see Section 2.8). However, there is a much more
efficient way to check the Gorenstein property, which does not even require the existence of
a grading: we must test whether the dual cone has degree 1 extreme rays. This amounts to
checking the existence of an implicit grading on the dual cone.

This very efficient Gorenstein test is activated by the option IsGorenstein, equivalently -G on
the command line. We take 5x5Gorenstein.in:

amb_space 25

equations 11

1 1 1 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

1 1 1 1 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0

IsGorenstein

In the output we see

Monoid is Gorenstein

Generator of interior

1 1

In fact, the Gorenstein property is (also) equivalent to the fact that the interior of our monoid
is generated by a single element as an ideal, and this generator is computed if the monoid
is Gorenstein. (It defines the grading under which the extreme rays of the dual cone have
degree 1.)

If the monoid is not Gorenstein, Normaliz will print the corresponding message.

109

6.8. Symmetrization

Under certain conditions one can count lattice points in a cone C by mapping C to a cone C′

of lower dimension and then counting each lattice point y in C′ with the number of its lattice
preimages. This approach works well if the number of preimages is given by a polynomial
in the coordinates of y. Since C′ has lower dimension, one can hope that its combinatorial
structure is much simpler that that of C. One must of course pay a price: instead of counting
each lattice point with the weight 1, one must count it with a polynomial weight. This amounts
to a computation of a weighted Ehrhart series that we will discuss in Section 6.9. Similarly
multiplicity can be computed as the virtual multiplicity of a polynomial after projection.

The availability of this approach depends on symmetries in the coordinates of C, and therefore
we call it symmetrization. Normaliz tries symmetrization under the following condition: C is
given by constraints (inequalities, equations, congruences, excluded faces) and the inequalities
contain the sign conditions xi ≥ 0 for all coordinates xi of C. (Coordinate hyperplanes may be
among the excluded faces.) Then Normaliz groups coordinates that appear in all constraints
and the grading (!) with the same coefficients, and, roughly speaking, replaces them by their
sum. The number of preimages that one must count for the vector y of sums is then a product
of binomial coefficients – a polynomial as desired. More precisely, if y j, j = 1, . . . ,m, is the
sum of u j variables xi then

f (y) =
(

u1 + y1−1
u1−1

)
· · ·
(

um + ym−1
um−1

)
.

is the number of preimages of (y1, . . . ,ym). This approach to Hilbert series has been suggested
by A. Schürmann [29].

Note that symmetrization requires an explicit grading. Moreover, it sets NoGradingDenom.

As an example we look again at the input for the Condorcet paradox:

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

Multiplicity

The grading is completely symmetric, and it is immediately clear that the input is symmetric
in the first 6 coordinates. But also the column of three entries −1 appears 6 times, and there
are 6 more groups of 2 coordinates each (one group for each ±1 pattern). With the suitable
labeling, the number of preimages of(y1, . . . ,y8) is given by

f (y) =
(

y1 +5
5

)
(y2 +1)(y3 +1)(y4 +1)(y5 +1)(y6 +1)(y7 +1)

(
y8 +5

5

)
.

Normaliz finds the groups of variables that appear with the same sign pattern, creates the data

110

for the weighted Ehrhart series, and interprets it as the Hilbert series of the monoid defined by
the input data.

However, there is a restriction. Since the polynomial arithmetic has its own complexity and
Normaliz must do it in GMP integers, it makes no sense to apply symmetrization if the dimen-
sion does not drop by a reasonable amount. Therefore we require that

dimC′ ≤ 2
3

dimC).

If called with the option -q, Normaliz will try symmetrization, and also with -v, provided
the multiplicity has not already been computed by the descent algorithm (see Section 6.6.2).
If the inequality for dimC′ is not satisfied, it will simply compute the Hilbert series or the
multiplicity without symmetrization. (In default mode it of course tries symmetrization for
the Hilbert series.)

Whenever Normaliz has used symmetrization, it writes the file <project>.symm.out that con-
tains the data of the symmetrized object. In it you find the multiplicity of <project>.out as
virtual multiplicity and the Hilbert series as weighted Ehrhart series.

If you use the option Symmetrize, then the behavior depends on the other options:

(1) If neither the HilbertSeries nor Multiplicity is to be computed, Normaliz writes
only the output file <project>.symm.out computed with SupportHyperplanes.

(2) If one of these goals is to be computed, Normaliz will do the symmetrization, regardless
of the dimension inequality above (and often this makes sense).

By doing step (1) first, the user gets useful information of what to expect by symmetrization.
In a second run, one can add HilbertSeries or Multiplicity if (1) was satisfactory.

The Condorcet example is too small in order to demonstrate the power of symmetrization. A
suitable example is PluralityVsCutoff.in:

winfried@ubuntu:~/Dropbox/git_normaliz/source$ time ./normaliz -c ../example/PluralityVsCutoff

\.....|

Normaliz 3.3.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

March 2017 \.|

\|

**
Command line: -c ../example/PluralityVsCutoff

Compute: DefaultMode

Embedding dimension of symmetrized cone = 6

...

--

transforming data... done.

real 0m2.655s

user 0m5.328s

sys 0m0.080s

111

The Hilbert series is computable without symmetrization, but you better make sure that there
is no power failure for the next week if you try that. (The time above includes the Hilbert basis
computed automatically in dual mode).

Another good example included in the distribution is CondEffPlur.in, but it takes some hours
with symmetrization (instead of days without). For it, the dimension drops only from 24 to
13.

Symmetrization is a special type of computations with a polynomial weight, and therefore
requires Normaliz to be built with CoCoALib.

In the computation of multiplicities via symmetrization Normaliz can use (implicitly or ex-
plicitly) signed decomposition, including fixed prrecision if asked for.

6.9. Computations with a polynomial weight

For a graded monoid M, which arises as the intersection M =C∩L of a rational coneC and a
lattice L, Normaliz computes the volume of the rational polytope

P = {x ∈ R+M : degx = 1},

called the multiplicity of M (for the given grading), the Hilbert series of M, and the quasipoly-
nomial representing the Hilbert function. This Hilbert series of M is also called the Ehrhart
series of P (with respect to L), and for the generalization introduced in this section we speak
of Ehrhart series and functions.

The computations of these data can be understood as integrals of the constant polynomial
f = 1, namely with respect to the counting measure defined by L for the Ehrhart function,
and with respect to the (suitably normed) Lebesgue measure for the volume. Normaliz gener-
alizes these computations to arbitrary polynomials f in n variables with rational coefficients.
(Mathematically, there is no need to restrict oneself to rational coefficients for f .)

More precisely, set
E(f ,k) = ∑

x∈M,degx=k
f (x),

and call E(f ,_) the weighted Ehrhart function for f . (With f = 1 we simply count lattice
points.) The weighted Ehrhart series is the ordinary generating function

E f (t) =
∞

∑
k=0

E(f ,k)tk.

It turns out that E f (t) is the power series expansion of a rational function at the origin, and can
always be written in the form

E f (t) =
Q(t)

(1− t`)totdeg f+rankM , Q(t) ∈Q[t], degQ < totdeg f + rankM.

Here totdeg f is the total degree of the polynomial f , and ` is the least common multiple
of the degrees of the extreme integral generators of M. See [15] for an elementary account,
references and the algorithm used by Normaliz.

112

Note that excluded_faces is a homogeneous input type. For them the monoid M is replaced
by the set

M′ =C′∩L

where C′ =C \F and F is the union of a set of faces (not necessarily facets) of C. What has
been said above about the structure of the weighted Ehrhart series remains true. We discuss
an example below.

It follows from the general theory of rational generating functions that there exists a quasipoly-
nomial q(k) with rational coefficients and of degree ≤ totdeg f + rankM−1 that evaluates to
E(f ,k) for all k ≥ 0.

Let m = totdeg f (we use this notation to distinguish the degree of the polynomial from the
degree of lattice points) and fm be the degree m homogeneous component of f . By letting k
go to infinity and approximating fm by a step function that is constant on the meshes of 1

k L
(with respect to a fixed basis), one sees

q(j)
totdeg f+rankM−1 =

∫
P

fm dλ

where dλ is the Lebesgue measure that takes value 1 on a basic mesh of L∩RM in the hyper-
plane of degree 1 elements in RM. In particular, the virtual leading coefficient q(j)

totdeg f+rankM−1
is constant and depends only on fm. If the integral vanishes, the quasipolynomial q has smaller
degree, and the true leading coefficient need not be constant. Following the terminology of
commutative algebra and algebraic geometry, we call

(totdeg f + rankM−1)! ·qtotdeg f+rankM−1

the virtual multiplicity of M and f . It is an integer if fm has integral coefficients and P is a
lattice polytope.

The input format of polynomials has been discussed in Section 3.1.8.

The terminal output contains a factorization of the polynomial as well as some computation
results. From the terminal output you may also recognize that Normaliz first computes the
triangulation and the Stanley decomposition and then applies the algorithms for integrals and
weighted Ehrhart series.

Remarks (1) Large computations with many parallel threads may require much memory due
to the fact that very long polynomials must be stored. Another reason for large memory usage
can be the precomputed triangulation or Stanley decomposition.

(2) You should think about the option BottomDecomposition. It will be applied to the sym-
metrized input. (Under suitable conditions it is applied automatically.)

(3) A priori it is not impossible that Normaliz replaces a given grading deg by deg/g where g
is the grading denominator. If you want to exclude this possibility, set NoGradingDenom.

6.9.1. A weighted Ehrhart series

We discuss the Condorcet paradox again (and the last time), now starting from the sym-
metrized form. The file Condorcet.symm.in from the directory example contains the fol-

113

lowing:

amb_space 8

inequalities 3

1 -1 1 1 1 -1 -1 -1

1 1 -1 1 -1 1 -1 -1

1 1 1 -1 -1 -1 1 -1

nonnegative

total_degree

polynomial

1/120*1/120*(x[1]+5)*(x[1]+4)*(x[1]+3)*(x[1]+2)*(x[1]+1)*(x[2]+1)*
(x[3]+1)*(x[4]+1)*(x[5]+1)*(x[6]+1)*(x[7]+1)*(x[8]+5)*(x[8]+4)*
(x[8]+3)*(x[8]+2)*(x[8]+1);

We have seen this polynomial in Section 6.8 above.

From the Normaliz directory we start the computation by

./normaliz -cE example/Condorcet.symm

We could have used --WeightedEhrhartSeries instead of -E or put WeightedEhrhartSeries
into the input file.

The file Condorcet.symm.out we find the information on the weighted Ehrhart series:

Weighted Ehrhart series:

1 5 133 363 ... 481 15 6

Common denominator of coefficients: 1

Series denominator with 24 factors:

1: 1 2: 14 4: 9

degree of weighted Ehrhart series as rational function = -25

Weighted Ehrhart series with cyclotomic denominator:

...

The only piece of data that we haven’t seen already is the common denominator of coeffi-
cients. But since the polynomial has rational coefficients, we cannot any longer expect that
the polynomial in the numerator of the series has integral coefficients. We list them as inte-
gers, but must then divide them by the denominator (which is1 in thus case since the weighted
Ehrhart series is a Hilbert series in disguise). As usual, the representation with a denominator
of cyclotomic polynomials follows.

And we have the quasipolynomial as usual:

Weighted Ehrhart quasi-polynomial of period 4:

0: 6939597901822221635907747840000 20899225...000000 ... 56262656

1: 2034750310223351797008092160000 7092764...648000 ... 56262656

2: 6933081849299152199775682560000 20892455...168000 ... 56262656

114

3: 2034750310223351797008092160000 7092764...648000 ... 56262656

with common denominator: 6939597901822221635907747840000

The left most column indicates the residue class modulo the period, and the numbers in line
k are the coefficients of the k-th polynomial after division by the common denominator. The
list starts with q(k)0 and ends with (the constant) q(k)23 . The interpretation of the remaining data
is obvious:

Degree of (quasi)polynomial: 23

Expected degree: 23

Virtual multiplicity: 1717/8192

Virtual multiplicity (float) = 0.209594726562

Weighted Ehrhart series can be computed for polytopes defined by homogeneous or inhomo-
geneous input. Weighted Ehrhart series as a weighted variant of Hilbert series for unbounded
polyhedra are not defined in Normaliz.

6.9.2. Virtual multiplicity

Instead of the option -E (or (--WeightedEhrhartSeries) we use -L or (--VirtualMultiplicity).
Then we can extract the virtual multiplicity from the output file.

The scope of computations is the same as for Weighted Ehrhart series.

6.9.3. An integral

In their paper Multiplicities of classical varieties (Proc. Lond. Math. Soc. 110 (2015), no. 4,
1033–1055) J. Jeffries, J. Montaño and M. Varbaro ask for the computation of the integral∫

[0,1]m
∑x=t

(x1 · · ·xm)
n−m

∏
1≤i< j≤m

(x j− xi)
2dµ

taken over the intersection of the unit cube in Rm and the hyperplane of constant coordinate
sum t. It is supposed that t ≤ m≤ n. We compute the integral for t = 2, m = 4 and n = 6.

The polytope is specified in the input file j462.in (partially typeset in 2 columns):

amb_space 5 -1 0 0 0 1

inequalities 8 0 -1 0 0 1

1 0 0 0 0 0 0 -1 0 1

0 1 0 0 0 0 0 0 -1 1

0 0 1 0 0 equations 1

0 0 0 1 0 -1 -1 -1 -1 2

grading

115

unit_vector 5

polynomial

(x[1]*x[2]*x[3]*x[4])^2*(x[1]-x[2])^2*(x[1]-x[3])^2*
(x[1]-x[4])^2*(x[2]-x[3])^2*(x[2]-x[4])^2*(x[3]-x[4])^2;

The 8 inequalities describe the unit cube in R4 by the inequalities 0≤ zi ≤ 1 and the equation
gives the hyperplane z1 + · · ·+ z4 = 2 (we must use homogenized coordinates!). (Normaliz
would find the grading itself.)

From the Normaliz directory the computation is called by

./normaliz -cI example/j462

where -I could be replaced by --Integral.

It produces the output in j462.out containing

integral = 27773/29515186701000

integral (float) = 9.40973210888e-10

As pointed out above, Normaliz integrates with respect to the measure in which the basic
lattice mesh has volume 1. (this is 1/r! times the lattice normalized measure, r = dimP.) In
the full dimensional case that is just the standard Lebesgue measure. But in lower dimensional
cases this often not the case, and therefore Normaliz also computes the integral with respect
to this Euclidean measure:

integral (euclidean) = 1.88194642178e-09

Note that Integral automatically sets NoGradingDenom since the polytope must be fixed for
integrals.

Note: integrals can be computed by signed decomposition, and Normaliz chooses this variant
if it seems better. Nevertheless you can control it by SignedDec and NoSignedDec. Fixed
precision set by decimal_digits is used for integrals as well.

6.10. Expansion of the Hilbert or weighted Ehrhart series

Normaliz can compute the expansion of the Hilbert function or the weighted Ehrhart function
up to a given degree. To this end its expands the series. For the Hilbert function there is a
second possibility by lattice point computation.

6.10.1. Series expansion

This is best explained by CondorcetExpansion.in:

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

116

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

HilbertSeries

expansion_degree 50

By expansion_degree 50 we tell Normaliz to compute the coefficients from degree 0 to de-
gree 50 in the expansion of the Hilbert series. So the output contains

Expansion of Hilbert series

0: 1

1: 6

2: 153

3: 586

4: 7143

5: 21450

...

49: 817397314032054600

50: 1357391110355875044

If the shift is nonzero, it is automatically added to the degree so that the expansion always
starts at the shift.

The expansion degree applies to the weighted Ehrhart series as well if it is computed.

There is nothing more to say, except that (in principle) there is another method, as discussed
in the next section.

6.10.2. Counting lattice points by degree

As an example we look at CondorcetRange.in:

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

constraints 2

1 <= 5

1 >= 3

Projection

NumberLatticePoints

HilbertSeries

expansion_degree 5

117

This input defines the polytope that is cut out from the cone (defined by the 3 inequalities) by
the two inequalities that are defined as constraints (for clarity). These two inequalities mean
that we want to compute the polytope of all points x in the cone satisfying the condition 3 ≤
degx ≤ 5. We add Projection in conjunction with NumebrLatticePoints to keep Normaliz
from choosing the primal algorithm, which would do the job as well, but much more slowly.

In the output we find

Hilbert series:

586 7143 21450

denominator with 0 factors:

shift = 3

Taking the shift into account, we see that there are 586 lattice points in degree 3, 7413 in
degree 4 and 21450 in degree 5. But this becomes even more obvious by (the unnecessary)
expansion_degree 5:

Expansion of Hilbert series

3: 586

4: 7143

5: 21450

With NumberLatticePoints the lattice points are not stored. Therefore very large numbers of
lattice points can be computed. (But they must be produced, and the production process also
needs some space, which however depends only on the dimension.)

6.10.3. Significant coefficients of the quasipolynomial

If the degree and simultaneously the period of the Hilbert or weighted Ehrhart quasipolynomial
are large, the space needed to store it (usually with large coefficients) may exceed the available
memory. Depending on the application, only a certain number of the coefficients may be
significant. Therefore one can limit the number of highest coefficients that are stored and
printed. We look at the input file CondorcetN.in:

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

nr_coeff_quasipol 2

The output file shows the following information on the quasipolynomial:

Hilbert quasi-polynomial of period 4:

only 2 highest coefficients computed

118

their common period is 2

0: 0 15982652919 56262656

1: 0 15528493056 56262656

with common denominator = 6939597901822221635907747840000

Normaliz computes and prints only as many components of the quasipolynomial as required
by the common period of the printed coefficients. Coefficients outside the requested range are
printed as 0.

The bound on the significant coefficients applies simultaneously to the Hilbert polynomial and
the weighted Ehrhart quasipolynomial—usually one is interested in only one of them.

By default Normaliz computes the quasipolynomial only if the period does not exceed a preset
bound, presently 106. If this bound is too small for your computation, you can remove it by
the option

NoPeriodBound

6.11. Explicit dehomogenization

Inhomogeneous input for data in Rd is homogenized by an extra (d + 1)-th coordinate. The
dehomogenization sets the last coordinate equal to 1. Other systems may prefer the first co-
ordinate. By choosing an explicit dehomogenization Normaliz can be adapted to such input.
The file dehomogenization.in

amb_space 3

inequalities 2

-1 1 0

-1 0 1

dehomogenization

unit_vector 1

indicates that in this case the first variable is the homogenizing one. The output file

1 module generators

2 Hilbert basis elements of recession monoid

1 vertices of polyhedron

2 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2

size of triangulation = 0

resulting sum of |det|s = 0

dehomogenization:

119

1 0 0

module rank = 1

1 module generators:

1 1 1

2 Hilbert basis elements of recession monoid:

0 0 1

0 1 0

1 vertices of polyhedron: 3 support hyperplanes of ... (homogenized)

1 1 1 -1 0 1

-1 1 0

2 extreme rays of recession cone: 1 0 0

0 0 1

0 1 0

shows that Normaliz does the computation in the same way as with implicit dehomogeniza-
tion, except that now the first coordinate decides what is in the polyhedron and what belongs
to the recession cone, roughly speaking.

Note that the dehomogenization need not be a coordinate. It can be any linear form that is
nonnegative on the cone generators.

6.12. Projection of cones and polyhedra

Normaliz can not only compute projections (as has become visible in the discussion of project-
and-float), but also export them if asked for by the computation goal

ProjectCone

As the computation goal says, only the cone is projected. Lattice data are not taken care of.
The image of the projection is computed with the goals SupportHyperplanes and ExtremeRays,
and the result is contained in an extra output file <project>.ProjectCone.out, similarly to
the result of the integer hull computation. (All other computation goals are applied to the input
cone.)

The image and the kernel a of the projection are complementary vector subspaces generated
by unit vectors. Those spanning the image are selected by the entries 1 in the 0-1 vector
projection_coordinates of the input file. As an example we take small_proj.in:

amb_space 6

cone 190

6 0 7 0 10 1

120

...

0 0 0 16 7 1

projection_coordinates

1 1 0 1 0 1

ProjectCone

As you can see from small_proj.out, almost nothing is computed for the input cone itself.
(However, any further computation goal would change this.) The result of the projection is
contained in small_proj.ProjectCone.out:

14 extreme rays

9 support hyperplanes

embedding dimension = 4

...

14 extreme rays:

0 0 1 1

0 0 17 1

...

11 0 5 1

11 0 6 1

9 support hyperplanes:

-1 -1 -1 20

...

1 0 1 -1

An equivalent inhomogeneous input file is small_proj_inhom.in. Note that no computation
goals are set for the projection – only support hyperplanes and extreme rays are computed
(plus the automatically included data).

Polyhedra and polytopes are treated by Normaliz as intersections of cones and hyperplanes.
The hyperplane is given by the grading in the homogeneous case and by the dehomogenization
in the inhomogeneous case. For the projection of the polyhedron, the kernel of the projection
must be parallel to this hyperplane. Normaliz checks this condition (automatically satisfied
for inhomogeneous input) and transfers the grading or the dehomogenization, respectively, to
the image. Therefore the image of the input polyhedron is indeed the polyhedron defined by
the projection.

6.13. Nonpointed cones

Nonpointed cones and nonpositive monoids contain nontrivial invertible elements. The main
effect is that certain data are no longer unique, or may even require a new definition. An
important point to note is that cones always split off their unit groups as direct summands
and the same holds for normal affine monoids. Since Normaliz computes only normal affine
monoids, we can always pass to the quotient by the unit groups. Roughly speaking, all data

121

are computed for the pointed quotient and then lifted back to the original cone and monoid.
It is inevitable that some data are no longer uniquely determined, but are unique only modulo
the unit group, for example the Hilbert basis and the extreme rays. Also the multiplicity and
the Hilbert series are computed for the pointed quotient. From the algebraic viewpoint this
means to replace the field K of coefficients by the group ring L of the unit group, which is a
Laurent polynomial ring over K: instead of K-vector space dimensions one considers ranks
over L.

6.13.1. A nonpointed cone

As a very simple example we consider the right halfplane (halfspace2.in):

amb_space 2

inequalities 1

1 0

When run in default mode, it yields the following output:

1 Hilbert basis elements

1 lattice points in polytope (Hilbert basis elements of degree 1)

1 extreme rays

1 support hyperplanes

embedding dimension = 2

rank = 2 (maximal)

external index = 1

dimension of maximal subspace = 1

size of triangulation = 1

resulting sum of |det|s = 1

grading:

1 0

degrees of extreme rays:

1: 1

Hilbert basis elements are of degree 1

multiplicity = 1

Hilbert series:

1

denominator with 1 factors:

1: 1

degree of Hilbert Series as rational function = -1

122

Hilbert polynomial:

1

with common denominator = 1

rank of class group = 0

class group is free

1 lattice points in polytope (Hilbert basis elements of degree 1):

1 0

0 further Hilbert basis elements of higher degree:

1 extreme rays:

1 0

1 basis elements of maximal subspace:

0 1

1 support hyperplanes:

1 0

In the preamble we learn that the cone contains a nontrivial subspace. In this case it is the
vertical axis, and close to the end we see a basis of this subspace, namely (0,1). This basis is
always simultaneously a Z-basis of the unit group of the monoid. The rest of the output is what
we have gotten for the positive horizontal axis which in this case is a natural representative of
the quotient modulo the maximal subspace, The quotient can always be embedded in the cone
or monoid respectively, but there is no canonical choice. We could have gotten (1,5) as the
Hilbert basis as well.

Normaliz has found a grading. Of course it vanishes on the unit group, but is positive on the
quotient monoid modulo the unit group.

Note that the data of type “dimension” (embedding dimension, rank, rank of recession monoid
in the inhomogeneous case, affine dimension of the polyhedron)) are measured before the
passage to the quotient modulo the maximal subspace. The same is true for equations and
congruences (which are trivial for the example above).

6.13.2. A polyhedron without vertices

We define the affine halfspace of the figure by gen_inhom_nonpointed.in:

amb_space 2

cone 3

1 -1

123

-1 1

0 1

vertices 1

-1 -1 3

It is clear that the “vertex” is not a vertex in the strict sense, but only gives a displacement of
the cone. The output when run in default mode:

1 module generators

1 Hilbert basis elements of recession monoid

1 vertices of polyhedron

1 extreme rays of recession cone

2 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2

internal index = 3

dimension of maximal subspace = 1

size of triangulation = 1

resulting sum of |det|s = 3

dehomogenization:

0 0 1

module rank = 1

1 module generators:

0 0 1

1 Hilbert basis elements of recession monoid:

0 1 0

1 vertices of polyhedron:

124

0 -2 3

1 extreme rays of recession cone:

0 1 0

1 basis elements of maximal subspace:

1 -1 0

2 support hyperplanes of polyhedron (homogenized):

0 0 1

3 3 2

The “vertex” of the polyhedron shown is of course the lifted version of the vertex modulo the
maximal subspace. It is not the input “vertex”, but agrees with it up to a unit.

6.13.3. Checking pointedness first

Nonpointed cones will be an exception in Normaliz computations, and therefore Normaliz
assumes that the (recession) cone it must compute is pointed. Only in rare circumstances it
could be advisable to have this property checked first. There is no need to do so when the
dual algorithm is used since it does not require the cone to be pointed. Moreover, if an explicit
grading is given or a grading dependent computation is asked for, one cannot save time by
checking the pointedness first.

The exceptional case is a computation, say of a Hilbert basis, by the primal algorithm in which
the computation of the support hyperplanes needs very long time to be completed. If you are
afraid this may happen, you can force Normaliz to compute the support hyperplanes right
away by adding IsPointed to the computation goals. This is a disadvantage only if the cone
is unexpectedly pointed.

6.13.4. Input of a subspace

If a linear subspace contained in the cone is known a priori, it can be given to Normaliz via
the input type subspace. If Normaliz detects a subspace, it appends the rows of the matrix
to the generators of the cone, and additionally the negative of the sum of the rows (since we
must add the subspace as a cone). If subspace is combined with cone_and_lattice, then the
rows of subspace are also appended to the generators of the lattice. It is not assumed that the
vectors in subspace are linearly independent or generate the maximal linear subspace of the
cone. A simple example (subspace4.in):

amb_space 4

cone 4

1 0 2 0

0 1 -2 1

0 0 0 1

125

0 0 0 -1

subspace 1

0 0 1 0

From the output:

2 lattice points in polytope (Hilbert basis elements of degree 1):

0 1 0 0

1 0 0 0

0 further Hilbert basis elements of higher degree:

2 extreme rays:

0 1 0 0

1 0 0 0

2 basis elements of maximal subspace:

0 0 1 0

0 0 0 1

2 support hyperplanes:

0 1 0 0

1 0 0 0

One should note that the maximal subspace is generated by the smallest face that contains all
invertible elements. Therefore, in order to make all vectors in a face invertible, it is enough to
put a single vector from the interior of the face into subspace.

6.13.5. Data relative to the original monoid

If original monoid generators are defined, there are two data related to them that must be read
with care.

First of all, we consider the original monoid generators as being built from the vectors in cone

or cone_and_lattice plus the vectors in subspace and additionally the negative of the sum
of the latter (as pointed out above).

The test for “Original monoid is integrally closed” is correct – it returns true if and only if
the original monoid as just defined indeed equals the computed integral closure. (There was a
mistake in version 3.0.)

The “module generators over the original monoid” only refer to the image of the original
monoid and the image of the integral closure modulo the maximal subspace. They do not take
into account that the unit group of the integral closure may not be generated by the original
generators. An example in which the lack of integral closedness is located in the unit group
(normface.in):

amb_space 5

126

cone 4

0 0 0 1 1

1 0 0 1 1

0 1 0 1 1

0 0 1 1 1

subspace 4

0 0 0 0 1

1 0 0 0 1

0 1 0 0 1

1 1 2 0 1

From the output file:

...

dimension of maximal subspace = 4

original monoid is not integrally closed in chosen lattice

unit group index = 2

...

1 lattice points in polytope (Hilbert basis elements of degree 1):

0 0 0 1 0

...

1 module generators over original monoid:

0 0 0 0 0

The original monoid is not integrally closed since the unit group of the integral closure is
strictly larger than that of the original monoid: the extension has index 2, as indicated. The
quotients modulo the unit groups are equal, as can be seen from the generator over the original
monoid or the Hilbert basis (of the integral closure) that is contained in the original monoid.

6.14. Exporting the triangulation

The primal algorithm of Normaliz is based on “triangulations”. What we call a “triangulation”
here, is often only a collection of simplicial cones with properties that come close to those of a
triangulation in the strict sense. Without being asked explicitly, Normaliz does not try to store
and export its computational tool. In the file <project>.out you can sometimes see words
“partial” and “nested”. “Partial” means that only a subset of the cone has been triangulated,
and “nested” is explained below. But if the user wants Normaliz to export a triangulation, then
a triangulation in the strict sense is computed.

The option Triangulation, -T asks Normaliz to export a triangulation by writing the files
<project>.tgn and <project>.tri:

tgn The file tgn contains a matrix of vectors (in the coordinates of A) spanning the simplicial
cones in the triangulation.

tri The file tri lists the simplicial subcones. There are two variants, depending on whether

127

ConeDecomposition had been set. Here we assume that ConeDecomposition is not
computed. See Section 6.14.2 for the variant with ConeDecomposition.
The first line contains the number of simplicial cones in the triangulation, and the next
line contains the number m+1 where m = rankE. Each of the following lines specifies
a simplicial cone ∆: the first m numbers are the indices (with respect to the order in the
file tgn) of those generators that span ∆, and the last entry is the multiplicity of ∆ in
E, i.e., the absolute value of the determinant of the matrix of the spanning vectors (as
elements of E).

The following example is the 2-dimensional cross polytope with one excluded face (cross2.in).
The excluded face is irrelevant for the triangulation.

amb_space 3

polytope 4

1 0

0 1

-1 0

0 -1

excluded_faces 1

-1 -1 1

Triangulation

StanleyDec

(The Stanley decomposition will be discussed in Section 6.16.) Its tgn and tri files are

tgn tri

4 2

3 4

-1 0 1 1 2 3 2

0 -1 1 2 3 4 2

0 1 1

1 0 1

We see the 4 vertices v1, . . . ,v4 in homogenized coordinates in tgn and the 2 simplices (or the
simplicial cones over them) in tri: both have multiplicity 2.

In addition to the files <project>.tgn and <project>.tri, also the file <object>.inv is
written. It contains the data of the file <project>.out above the line of stars in a human and
machine readable format.

Note: Normaliz (now) allows the computation of triangulations for all input. In the homoge-
neous case it computes a triangulation of the (pointed quotient of the) cone C defined by the
input. It can then be interpreted as a triangulation of a cross-section polytope if a grading is
given. In the inhomogeneous case for which the input defines a polyhedron P, C is the cone
over P. If P is a polytope, then a triangulation of C can again be identified with a triangula-
tion of P. However, if P is unbounded, the the triangulation of C only induces a polyhedral
decomposition of P into subpolyhedra whose compact faces are simplices.

128

6.14.1. Nested triangulations

We explain what we mean by a nested triangulation, even if it cannot be exported. If Normaliz
has subdivided a simplicial cone of a triangulation of the cone C, the resulting decomposition
of C may no longer be a triangulation in the strict sense. It is rather a nested triangulation,
namely a map from a rooted tree to the set of full-dimensional subcones of C with the following
properties:

(1) the root is mapped to C,
(2) every other node is mapped to a full dimensional simplicial subcone,
(3) the simplicial subcones corresponding to the branches at a node x form a triangulation

of the simplicial cone corresponding to x.

The following figure shows a nested triangulation:

For the Normaliz computations, nested triangulations are as good as ordinary triangulations,
but in other applications the difference may matter. With the option -T, Normaliz prints the
leaves of the nested triangulation to the tri file. They constitute the simplicial cones that are
finally evaluated by Normaliz. The subdivision can be blocked by NoSubdivision, indepen-
dently of the computation goals.

The triangulation is always plain if -T is used, or if one of the refined triangulations below is
computed.

6.14.2. Disjoint decomposition

Normaliz can export the disjoint decomposition of the cone that it has computed. This decom-
position is always computed together with a full triangulation, unless only the multiplicity is
asked for. It represents the cone as the disjoint union of semiopen simplicial subcones. The
corresponding closed cones constitute the triangulation, and from each of them some facets
are removed so that one obtains a disjoint decomposition. In the following figure, the facets
separating the triangles are omitted in the triangle on the − side.

129

+−+
−+ −+

−+

−+

+
− −

+

−+
+

+

+ +

+

+

+

If you want to access the disjoint decomposition, you must activate the computation goal
ConeDecomposition or use the command line option is -D. As an example we compute cross2.in
with the computation goal ConeDecomposition. The file cross2.tri now looks as follows:

2

7

1 2 3 2 0 0 0

2 3 4 2 0 0 1

As before the first line contains the size of the triangulation and the second is the number of
entries of each row. The first 3 entries in each line are the indices of the extreme rays with
respect to the tgn file and the fourth entry is the determinant. They are followed by a 0/1
vector indicating the open facets in the order in which they are opposite to the extreme rays.
If the corresponding entry is 1, the facet must be removed.

In our example all facets of the first simplicial cone are kept, and from the second simplicial
cone the facet opposite to the third extreme ray (with index 4 relative to tgn) must be removed.

The disjoint decomposition which is the basis of all Hilbert series computations uses the algo-
rithm suggested by Köppe and Verdoolaege [26].

6.15. Terrific triangulations

The basic triangulation computed by the Normaliz primal algorithm is a collection of sim-
plicial cones each of which is generated by a subset of the generators of the cone C that is
computed. Neither it is guaranteed that every generator of C appears as a generator of one
of the simplicial cones, nor that every lattice point of a polytope participates in the triangula-
tion. Moreover, there is no restriction on the determinants of the simplicial cones. Normaliz
offers refined triangulations that satisfy the type of condition just mentioned. The refined tri-
angulations start from the basic triangulation and refine it by iterated stellar subdivision. For
background information we recommend [7], especially Chapter 2.

All these triangulations are “plain” and “full”. Moreover, Normaliz can hold only a single
triangulation. Therefore the refined triangulations exclude each other mutually.

The number of simplicial cones and the determinant sum appearing in the output file refer
to the basic triangulation. The files tri and tgn contain the refined triangulation. It is not
possible to derive a disjoint cone decomposition from a refined triangulation.

Warning. Refined triangulations can become very large. For example, for small.in the basic
triangulation has 4580 simplicial cones, but the LattcicePointTriangulation has 739,303

130

of them. For the unimodular triangulation the number rises to 49,713,917, and the number
of rays is 5,558,042, whereas the number of lattice points is only 34,591. You should use
LongLong whenever possible.

In addition to the refined triangulations Normaliz offers placing and pulling triangulations
which are defined combinatorially with respect to the order in which the generators are in-
serted.

6.15.1. Just Triangulation

Our running example in the following is square2.in :

amb_space 3

cone 6

0 0 1

0 2 1

2 0 1

2 1 1

2 2 1

3 3 2

Triangulation

/* AllGeneratorsTriangulation */

/* LatticePointTriangulation */

/* UnimodularTriangulation */

/* PullingTriangulation */

The input file defines a square in the plane. For demonstration purposes we have added two
generators to the first four that define the vertices of the square. The output is the basic
triangulation:

tri tgn

3 6

4 3

1 2 3 4 0 0 1

2 3 4 2 0 2 1

2 4 5 2 2 0 1

2 1 1

2 2 1

3 3 2

Normaliz sorts the generators lexicographically by default so that (2,1,1) is inserted into cone
building before (2,2,1). If you add KeepOrder to the input, the basic triangulation will have
only 2 triangles: the square is subdivided along its diagonal.

Note: The remark in Section 6.14 about the interpretation of general triangulations applies to
the refined triangulations as well. The refined triangulations are computed for the cone over
the polyhedron if the input is inhomogeneous. LatticePointTriangulation is only allowed
if the input defines a polytope.

131

6.15.2. All generators triangulation

The option

AllGeneratorsTriangulation

asks for a triangulation such that all generators appear as rays in it. (It can be added to
Triangulation, but can also be used alone.) For our example we get

tri tgn

5 6

4 3

1 2 3 4 0 0 1

2 3 4 2 0 2 1

4 5 6 1 2 0 1

2 5 6 2 2 1 1

2 4 6 1 2 2 1

3 3 2

6.15.3. Lattice point triangulation

The option

LatticePointTriangulation

asks for a triangulation such that all lattice points of a polytope appear as vertices in it. (It can
be added to Triangulation, but can also be used alone.) This option implies LatticePoints
and, therefore, NoGradingDenom. For our example we get

tri tgn

8 10

4 3

3 4 9 1 0 0 1

2 4 9 1 0 2 1

4 5 10 1 2 0 1

2 4 10 1 2 1 1

3 7 8 1 2 2 1

1 7 8 1 3 3 2

3 7 9 1 0 1 1

2 7 9 1 1 0 1

1 2 1

6.15.4. Unimodular triangulation

The option

UnimodularTriangulation

asks for a triangulation such that all generators appear as rays in it. (It can be added to

132

Triangulation, but can also be used alone.) The goal is a triangulation into simplicial cones
of determinant 1. It implies HilbertBasis since all elements of the Hilbert basis must appear
as rays in a unimodular triangulation, but in general further vectors must be used.

UnimodularTriangulation is not allowed in inhomogeneous computations or for algebraic
polyhedra.

For our example above we get nothing new since lattice point triangulations of 2-dimensional
lattice polytopes are automatically unimodular. We recommend to run polytope.in with the
option UnimodularTriangulation.

6.15.5. Placing triangulation

This is very close to the basic triangulation that Normaliz computes, except that for the ba-
sic triangulation Normaliz takes the freedom to reorder the generators and to apply bottom
decomnposition if it seems to be useful If you insist on

PlacingTriangulation

then these manipulations are excluded. The generators are inserted exactly in the order as
Normaliz gets them. The triangulation is built incrementally: if the polytope (or cone) P is
extended by the next generator x to form the polytope Q, then the triangulation is augmented
by all simplices that arise as the convex (or conical) hulls of the new generators and the faces
of the ‘òld” triangulation that are in those facets of P which are visible from x. In particular
this means that the new triangulation of Q is exactly the old of P if x ∈ P.

For our running example PlacingTiangulations gives the same result as Triangulation,
and therefore we don’t repeat the output.

Placing triangulations arise as lexicographic triangulations in the context of Gröbner bases of
toric ideals; see Sturmfels [30, p. 67].

6.15.6. Pulling triangulation

For the pulling triangulation,

PullingTriangulation

the generators are also inserted in the order given. However, the extension from P to Q follows
are different rule: now the new triangulation is formed by taking the convex (or conical) hull
of the new generator x and all faces of the ‘òld” triangulation that are in those facets of P
which are invisible from x and their collection replaces theòld triangulation – it is indeed a
triangulation of Q. If x ∈ P, then the invisible facets of P are those that do not contain x. One
consequence is that the last inserted generator is in all facets of the pulling triangulation.

For our running example we get

133

tri tgn

4 6

4 3

1 2 6 6 0 0 1

1 3 6 6 0 2 1

2 5 6 2 2 0 1

3 5 6 2 2 1 1

2 2 1

3 3 2

Pulling triangulations arise as reverse lexicographic triangulations in the context of Gröbner
bases of toric ideals; see Sturmfels [30, p. 67].

6.16. Exporting the Stanley decomposition

The computation goal StanleyDec, -y makes Normaliz write the files <project>.tgn, <project>.dec
and <project>.inv. Stanley decomposition is contained in the file with the suffix dec. But
this file also contains the inclusion/exclusion data if there are excluded faces:

(a) If there are any excluded faces, the file starts with the word in_ex_data. The next line
contains the number of such data that follow. Each of these lines contains the data of a face
and the coefficient with which the face is to be counted: the first number lists the number of
generators that are contained in the face, followed by the indices of the generators relative to
the tgn file and the last number is the coefficient.

(b) The second block (the first if there are no excluded faces) starts with the word Stanley_dec,
followed by the number of simplicial cones in the triangulation.

For each simplicial cone ∆ in the triangulation this file contains a block of data:

(i) a line listing the indices i1, . . . , im of the generators vi1 , . . . ,vim relative to the order in tgn

(as in tri, m = rankE);

(ii) a µ×m matrix where µ is the multiplicity of ∆ (see above).

In the notation of [11], each line lists an “offset” x+ε(x) by its coordinates with respect
to vi1, . . . ,vim as follows: if (a1, . . . ,am) is the line of the matrix, then

x+ ε(x) =
1
µ
(a1vi1 + · · ·+amvim).

The dec file of the example cross2.in is

in_ex_data

1

2 3 4 -1

Stanley_dec

2

1 2 3 2 3 4

2 2

134

3 3

0 0 0 0 0 2

0 1 1 1 1 2

For reference: cross2.tgn is

4

3

-1 0 1

0 -1 1

0 1 1

1 0 1

There is 1 face in in_ex_data (namely the excluded one), it contains the 2 generators v3 and
v4 and appears with multiplicity −1. The Stanley decomposition consists of 4 components of
which each of the simplicial cone contains 2. The second offset in the second simplicial cone
is

1
2
(1v2 +1v3 +2v4) = (1,0,2).

Another input file in example is Stanleydec.in.

Note: The computation and export of the Stanley decomposition in the inhomogeneous case
is the same as that of triangulations: it is computed for the cone over the polyhedron.

6.17. Face lattice, f-vector and incidence matrix

In connection with “face”, “lattice” means a partially ordered set with meet and join. Every
face of a polyhedron is the intersection of the facets that contain it, and therefore Normaliz
computes all intersections of facets, including the polyhedron itself and the empty set if the
intersection of all facets should be empty.

The computation of the face lattice or just the f-vector might require very much memory.
Therefore one should be careful if the dimension is large or there are many support hyper-
planes.

The file rationalFL.in contains
amb_space 3

polytope 3

1/2 1/2

-1/3 -1/3

1/4 -1/2

HilbertSeries

FaceLattice

Incidence

representing a rational triangle. (Without FaceLattice it has been discussed in Section 2.5.)
(Incidence is discussed below.)

135

Since the face lattice can be very large, it is returned as a separate file <project>.fac. For
our example we get rationalFL.fac:

8

3

000 0

100 1

010 1

110 2

001 1

101 2

011 2

111 3

primal

The first line contains the number of faces, and the second the number of facets. The other
lines list the faces F , encoded by a a 0-1-vector and an integer. The integer is the codimension
of F . The 0-1-vector lists the facets containing F : the entry 1 at the i-th coordinate indicates
that the i-th facet contains F .

The attribute primal indicates that we have computed the face lattice on the primal side. Dual
face lattices will be introduced below.

The facets are counted as in the main output file <project>.out. (If you want them in a
separate file, activate the output file <project>.cst.) In our case the support hyperplanes are:

-8 2 3

1 -1 0

2 7 3

So, for example, the face 011 is contained in the facets given by the linear forms (1,−1,0)
and (2,7,3): it is the vertex (1/2,1/2,1) (in homogeneous coordinates). The first face 000 is
the intersection of the empty set of facets, namely the full triangle, and the last face 111 is the
empty set.

Note that one can set a bound on the codimension of the faces that are to be computed. See
Section 2.10.3.

One can retrieve the incidence matrix using the computation goal Incidence. It is printed to
the file <project>.inc. The format of this files is illustrated by two examples. The first is
rationalFL again, with its homogeneous input:

3

0

3

101

110

011

136

primal

The first line contains the number of support hyperplanes, the second the number of vertices
of the polyhedron (0 for homogeneous input), and the third the number of extreme rays of the
(recession) cone. The following lines list the incidence vectors of the facets. They are ordered
in the same way as the support hyperplanes in the main output file. The incidence vector has
entry 1 for an extreme ray (or) vertex) contained in the facet, and 0 otherwise. The extreme
rays are ordered as in the main output file.

In the inhomogeneous case each line starts with the incidence for the vertices of the polyhe-
dron, followed by the extreme rays of the recession cone. An example is InhomIneqInc.inc

3

2

1

01 1

10 1

11 0

primal

with its 2 vertices and 1 extreme ray of the recession cone.

6.17.1. Dual face lattice, f-vector and incidence matrix

Normaliz can also compute the face lattice of the dual cone. On the primal side this means
that the face lattice is built bottom up and each face is represented by the extreme rays it
contains. Since this is not possible for unbounded polyhedra, the dual versions are restricted
to homogeneous input or inhomogeneous input defining polytopes. One application of the
dual version is the computation of faces of low dimension which may be difficult to reach
from the top if there are many facets. The numerical face_codim_bound now refers to the face
codimension on the dual side. For example, if one wants to compute the edges of a polytope
from the vertices, face_codim_bound must be set to 2 since the edges define codimension 2
faces of the dual polytope.

An example (cube_3_dual_fac.in):

amb_space 3

constraints 6 symbolic

x[1] >= 0;

x[2] >= 0;

x[3] >= 0;

x[1] <= 1;

x[2] <= 1;

x[3] <= 1;

DualFaceLattice

DualIncidence

137

face_codim_bound 2

In the output file we see

dual f-vector (possibly truncated):

12 8 1

which is the f-vector of the dual polytope (or cone) starting from codimension 2 and going up
to codimension 0.

The dual face lattice up to codimension 2 is given by is given by

21

8

00000000 0

10000000 1

...

00000011 2

dual

Indeed, we have 21 faces in that range, and each face is specified by the vertices (or extreme
rays) it contains. The attribute dual helps to recognize the dual situation.

The dual incidence matrix lists the support hyperplanes containing the vertices (or extreme
rays):

8

0

6

000111

...

111000

dual

For the cube defined by inhomogeneous input we have 8 vertices of the polyhedron, 0 extreme
rays of the recession cone and 6 facets.

Primal and dual versions of face lattice and incidence, respectively, are printed to the same
file. Therefore only one of them is allowed.

6.18. Module generators over the original monoid

Suppose that the original generators are well defined in the input. This is always the case
when these consists just of a cone or a cone_and_lattice. Let M be the monoid generated
by them. Then Normaliz computes the integral closure N of M in the effective lattice E. It
is often interesting to understand the difference set N \M. After the introduction of a field
K of coefficients, this amounts to understanding K[N] as a K[M]-module. With the option

138

ModuleGeneratorsOverOriginalMonoid, -M Normaliz computes a minimal generating set T
of this module. Combinatorially this means that we find an irreducible cover

N =
⋃
x∈T

x+M.

Note that 0 ∈ T since M ⊂ N.

0

As an example, we can run 2cone.in with the option -M on the command line. This yields the
output

...

4 Hilbert basis elements:

1 1

1 2 5 module generators over original monoid:

1 3 0 0

2 1 1 1

1 2

2 extreme rays: 2 2

1 3 2 3

2 1

In the nonpointed case Normaliz can only compute the module generators of N/N0 over
M/(M ∩N0) where N0 is the unit group of N. If M0 6= M0, this is not a system of genera-
tors of M over N.

6.18.1. An inhomogeneous example

Let us have a look at a very simple input file (genmod_inhom2.in):

amb_space 2

cone 2

0 3

2 0

vertices 1

0 0 1

ModuleGeneratorsOverOriginalMonoid

139

The cone is the positive orthant that we have turned into a polyhedron by adding the vertex
(0,0). The original monoid is generated by (2,0) and (0,3).

In addition to the original monoid M and its integral closure N we have a third object, namely
the module P of lattice points in the polyhedron.We compute

1. the system of generators of P over N (the module generators) and

2. the system of generators of P over N (the module generators over original monoid).

We do not compute the system of generators of N over M (that we get in the homogeneous
case).

The output:

1 module generators

2 Hilbert basis elements of recession monoid

1 vertices of polyhedron

2 extreme rays of recession cone

6 module generators over original monoid

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2

internal index = 6

size of triangulation = 1

resulting sum of |det|s = 6

dehomogenization:

0 0 1

module rank = 1

1 module generators:

0 0 1

2 Hilbert basis elements of recession monoid:

0 1 0

1 0 0

1 vertices of polyhedron:

0 0 1

2 extreme rays of recession cone:

0 1 0

140

1 0 0

6 module generators over original monoid:

0 0 1

0 1 1

0 2 1

1 0 1

1 1 1

1 2 1

3 support hyperplanes of polyhedron (homogenized):

0 0 1

0 1 0

1 0 0

6.19. Lattice points in the fundamental parallelepiped

Let u1, . . . ,un be linearly independent vectors in Zd ⊂ Rd . They span a simplicial cone C.
Moreover let U be the subgroup of (Rd,+) generated by u1, . . . ,un and let v ∈ Rd . We are
interested in the shifted cone C′ = v+C. We assume that C′ contains a lattice point. This need
not be true if n < s, but with our assumption we can also assume that n = d after the restriction
to the affine space spanned by C′. The fundamental parallelepiped of C (with respect to U) is

F = par(u1, . . . ,ud) = {qqu1 + · · ·+qdud : 0≤ qi < 1}.

Set F ′ = v+F . Then the translates u+F ′, u ∈U , tile Rd; so F ′ is a fundamental domain for
the action of U on Rd by translation, and we call it F ′ the fundamental parallelepiped of C′

(with respect to U). Every point in Rd differs from exactly one point in F ′ by an element of
U . This holds in particular for the lattice points.

One of the main basic tasks if Normaliz is the computation of the lattice points in F ′, es-
pecially in the case v = 0 (but not only). Looking back at the examples in Section 6.18,
we see that we can in fact compute and export these lattice points via the computation goal
ModuleGeneratorsOverOriginalMonoid.

Often however, an additional complication comes up: we must shift F ′ by an infinitesimally
small vector in order to exclude certain facets of C′. This would be difficult in Normaliz
without the input type open_facets (see Section 3.12). Recall that this is a 0-1-vector whose
entries 1 indicate which facets must be avoided: if its i-th entry is 1, then the facet opposite to
v+ui must be made “open”.

The input file no_open_facets.in is

amb_space 2

cone 2

1 1

-3 3

141

vertices 1

1/2 1/2 1

ModuleGeneratorsOverOriginalMonoid

Then no_open_facets.out contains

6 module generators over original monoid:

-2 3 1

-1 2 1

-1 3 1

0 1 1

0 2 1

1 1 1

These are 6 encircled points in the left figure.

0
v

0

v′

Now we add
open_facets

1 0

to the input (to get open_facets.in). We have tried to indicate the infinitesimal shift by the
blue rectangle in the left figure. The computation yields

6 module generators over original monoid:

-1 3 1

-1 4 1

0 2 1

0 3 1

1 1 1

1 2 1

which are the encircled lattice points in the right figure. It is explained in Section 3.12 how
the new vector v′ is computed.

Note that the lattice points are listed with the homogenizing coordinate 1. In fact, both
vertices and open_facets make the computation inhomogeneous. If both are missing, then
the lattice points are listed without the homogenizing coordinate. If you want a uniform for-
mat for the output, you can use the zero vector for open_facets or the origin as the vertex.

142

Both options change the result only to the extent that the homogenizing coordinate is added.

6.20. Semiopen polyhedra

A semiopen polyhedron P is a subset of Rd defined by system of inequalities λi(x) ≥ 0, i =
1, . . . ,u, and λi(x)> 0, i = u+1, . . . ,v, where λ1, . . . ,λv are affine linear forms. Normaliz can
check whether P is empty and compute Hilbert/Ehrhart series if P is a semiopen polytope.

The inequalities λi(x)> 0, i= u+1, . . . ,v, must be defined by excluded_faces in the homoge-
neous case and inhom_excluded_faces in the inhomogeneous case. (Don’t use strict_inequalities;
they have a different effect.) These input types can be combined with generators and other
constraints.

Let P be the closed polyhedron defined by the inequalities λi(x) ≥ 0, i = 1, . . . ,u and the
“weak” inequalities λi(x)≥ 0, i= u+1, . . . ,v. Then P is the topological closure of P, provided
P 6= /0. The main object for Normaliz is P, but the computation is restricted to P for the
following goals if excluded_faces or inhom_excluded_faces are present in the input:

HilbertSeries EhrhartSeries WeightedEhrhartSeries

StanleyDecomposition IsEmptySemiOpen

See Section 2.10.1 for a typical example of HilbertSeries. For all other computation goals
excluded_faces and inhom_excluded_faces are simply ignored. Note that for lattice points
in P the inequalities λi(x) > 0, i = u+ 1, . . . ,v, can be replaced by λi(x) ≥ 1 (if the λi have
integral coefficients). Therefore lattice points in semiopen polyhedra can be computed as well.
But they require a different input.

Note that Normaliz throws a BadInputException if you try to compute one the first four goals
above for the empty set.

Let us have a look at two examples. In the first P is empty, in the second P is nonempty.

IsEmpty.in IsNonEmpty.in

amb_space 1 amb_space 1

inequalities 1 inequalities 1

1 1

inhom_excluded_faces 1 inhom_excluded_faces 1

-1 0 -1 1

IsEmptySemiOpen EhrhartSeries

IsEmptySemiOpen

The empty semiopen polytope is defined by the inequalities λ1(x) ≥ 0 and λ2(x) < 0. In the
second example the second inequality is replaced by λ2(x)< 1.

The first output file:

1 vertices of polyhedron

0 extreme rays of recession cone

143

1 support hyperplanes of polyhedron (homogenized)

1 excluded faces

embedding dimension = 2

affine dimension of the polyhedron = 0

rank of recession monoid = 0 (polyhedron is polytope)

dehomogenization:

0 1

Semiopen polyhedron is empty

Covering face:

-1 0

...

We are informed that the semiopen polyhedron P is empty. Moreover, we see an excluded face
that covers P and forces P to be empty. All other data refer to P = {0}.
Now the output for the nonempty semiopen polytope:

2 vertices of polyhedron

0 extreme rays of recession cone

2 support hyperplanes of polyhedron (homogenized)

1 excluded faces

embedding dimension = 2

affine dimension of the polyhedron = 1 (maximal)

rank of recession monoid = 0 (polyhedron is polytope)

dehomogenization:

0 1

Ehrhart series:

1

denominator with 2 factors:

1: 2

shift = 1

degree of Ehrhart Series as rational function = -1

The numerator of the Ehrhart series is symmetric.

Ehrhart polynomial:

0 1

with common denominator = 1

144

Semiopen polyhedron is nonempty

Note that the Ehrhart series is computed for the interval [0,1). All other data are computed for
[0,1].

6.21. Rational lattices

It is sometimes desirable to work in a sublattice of Rd that is not contained in Z. Such lattices
can be defined by the input type rational_lattice. In the inhomogeneous case the origin
can be moved by rational_offset. Note that a finitely generated Z-submodule of Qd is
automatically discrete. An example input file (ratlat_2.in):

amb_space 2

vertices 3

0 0 1

0 1 1

1 0 1

rational_lattice 2

1/2 -1/3

1 1/2

rational_offset

1 0

EhrhartSeries

HSOP

Though the origin is shifted by an integral vector, rational_offset has to be used. Con-
versely, if rational_offset is in the input, the lattice can only be defined by rational_lattice.

Normaliz must return the results by integer vectors. Therefore it scales the coordinate axes of
Qd in such a way that the vectors given in rational_lattice and rational_offset become
integral with respect to the scaled coordinate axes. The output:

3 lattice points in polytope (module generators)

0 Hilbert basis elements of recession monoid

3 vertices of polyhedron

0 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 0 (polyhedron is polytope)

scaling of axes

2 6

dehomogenization:

145

0 0 1

module rank = 3

Ehrhart series (HSOP):

1 2 3 4 8 8 10 10 10 9 8 4 4 2 1

denominator with 3 factors:

1: 1 7: 2

degree of Ehrhart Series as rational function = -1

...1

Ehrhart quasi-polynomial of period 7:

0: 7 5 6

...

with common denominator = 7

3 lattice points in polytope (module generators):

0 4 1

1 2 1

2 0 1

0 Hilbert basis elements of recession monoid:

3 vertices of polyhedron:

0 0 7

0 42 7

2 0 1

0 extreme rays of recession cone:

3 support hyperplanes of polyhedron (homogenized):

-3 -1 6

0 1 0

1 0 0

1 congruences:

3 5 1 7

3 basis elements of generated lattice:

1 0 -3

0 1 2

146

0 0 7

The vector following scaling of axes contains the inverses of the scaling factors of the basis
elements of Qd . In the example above the first basis vector is divided by 2 and the second by
6. Thus the ambient lattice has changed from Z to A = Z(1/2,0)+Z(0,1/6). We can see
from the appearance of a congruence that the lattice L = Z(1/2,−1/3)+Z(1,12) is strictly
contained in A. If the rank were smaller than 2, equations would appear.

The 3 lattice points, in original coordinates, are (0,2/3), (1/2,1/3) and (1,0). The last is our
origin.

Since certain input types do not allow division of coordinates they are excluded by rational_lattice

and rational_offset. See Section 7.2 for a list (with the inevitable changes).

6.22. Automorphism groups

The rational automorphism group AutQ(P) of a rational polyhedron P ⊂ Rd is the group of
all rational affine-linear transformations α of aff(P) that satisfy α(P) = P. In general, this
group is infinite. For example, if P is a cone of positive dimension, then AutQ(P) contains
the multiplicative group of positive rational numbers as a subgroup. At the other extreme, if P
is a polytope, then AutQ(P) is a finite group since every automorphism permutes the finitely
many vertices of P and is uniquely determined by its values on them. Often one is interested
in subgroups of AutQ(P), for example the isometries in it or the automorphisms that permute
the lattice points.

Normaliz computes only subgroups of AutQ(P) that permute a given finite set G of “genera-
tors”. This subgroup is denoted by AutQ(P;G). Bremner et al. [4] have shown how to compute
AutQ(P;G) by reducing this task to finding the automorphisms of a weighted graph, and the
latter task can be solved efficiently by nauty [27]. We use the same approach (with variations).

Every polyhedron defines its face lattice as a purely combinatorial object, and it makes also
sense to consider the automorphisms of the face lattice that we call combinatorial automor-
phisms of P. All the automorphism groups that Normaliz computes are subgroups of the
combinatorial automorphism group in a natural way. (This does not necessarily apply to
AmbientAutomorphisms and InputAutomorphisms.)

The automorphism group is contained in the extra output file <project>.aut. Its contents are
explained in the following.

Note:

(1) If a grading is defined, then Normaliz computes only automorphisms that preserve the
grading.

(2) The automorphism groups of a nonpointed polyhedron (as far as they can be computed)
are those of the quotient by the maximal subspace. (This does not necessarily apply to
AmbientAutomorphisms and InputAutomorphisms.)

(3) Even if the automorphism groups of different types coincide for a polyhedron P, the
output files can differ since some details of the algorithms depend on the type and may

147

yield different systems of generators for the same group.
(4) Only one type of automorphism group can be computed in a single run of Normaliz (or

a call of the libnormaliz function compute). (This may change in then future.)

The examples below are very simple so that the results can be verified directly. The reader is
advised to try some larger examples, say lo6, bo5, A543, 6x6.

Normaliz can compute groups of automorphisms that only need the input and do not require
the passage from extreme rays to facets or conversely. They are discussed in the last two
subsections. Their main advantage is that they do not need extreme rays and facets, but only
the input vectors. Therefore automorphism groups (with some restrictions) can be computed
in cases in which the sheer number of extreme rays or facets prevent the computation of the
more refinded versions.

The groups computed from ‘raw” input must be interpreted with care. They are not neces-
sarily intrinsic data of the polyhedron (and lattice) they represent. We will see an example in
Section 6.22.6. If you run normaliz with an input file, then the raw automorphism groups are
computed before any other data so that there is no ambiguity what is meant by “input”. In
interactive mode this may depend on the order of computations and in particular can change if
the cone is modified after construction. For this type of automorphism group Normaliz saves
the reference input with the automorphism group. It is printed into the aut file and can be
retrieved from libnormaliz.

As it can be done with reasonable effort, Normaliz checks whether the computed group con-
sists of integral automorphisms. The output files therefore contain one of the following alter-
natives:

Automorphisms are integral

Automorphisms are not integral

Integrality not known

This information is always given, even if it is a priori known.

6.22.1. Euclidean automorphisms

Normaliz restricts the computation of euclidean automorphisms of a polyhedron P, i.e., rigid
motions that map P onto itself, to polytopes P. We briefly discuss the problem for general
polyhedra below. As a simple example we choose the cube of dimension 3 (cube_3.in):

amb_space 3

constraints 6 symbolic

x[1] >= 0;

x[2] >= 0;

x[3] >= 0;

x[1] <= 1;

x[2] <= 1;

x[3] <= 1;

EuclideanAutomorphisms

148

The file cube_3.aut contains the following:

Euclidean automorphism group of order 48

Integrality not known

**
3 permutations of 8 vertices of polyhedron

Perm 1: 1 3 2 4 5 7 6 8

Perm 2: 1 2 5 6 3 4 7 8

Perm 3: 2 1 4 3 6 5 8 7

Cycle decompositions

Perm 1: (2 3) (6 7) --

Perm 2: (3 5) (4 6) --

Perm 3: (1 2) (3 4) (5 6) (7 8) --

1 orbits of vertices of polyhedron

Orbit 1 , length 8: 1 2 3 4 5 6 7 8

**
3 permutations of 6 support hyperplanes

Perm 1: 1 3 2 5 4 6

Perm 2: 2 1 3 4 6 5

Perm 3: 1 2 4 3 5 6

Cycle decompositions

Perm 1: (2 3) (4 5) --

Perm 2: (1 2) (5 6) --

Perm 3: (3 4) --

1 orbits of support hyperplanes

Orbit 1 , length 6: 1 2 3 4 5 6

The automorphism group has order 48. The system of generators computed by nauty has 3
elements, listed as permutations of the extreme rays, and, in the second part, as permutations
of the facets. Perm 1: 1 3 2 4 5 7 6 8 says that the first permutation maps vertex 1 to itself,
vertex 2 to vertex 3 etc. The reference order of the vertices is the one in which they are listed
in cube_3.out:

8 vertices of polyhedron:

0 0 0 1

0 0 1 1

149

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

The cycle decompositions show that all generators of the euclidean automorphism group have
order 2. It is a good exercise to identify them geometrically.

Both the vertices and the facets form a single orbit for the 3-cube. As a simple example for
which this not the case we take pythagoras.in:

amb_space 2

vertices 4

5 0 1

-5 0 1

3 4 1

-3 -4 1

EuclideanAutomorphisms

We get

Euclidean automorphism group of order 4

...

...

2 permutations of 4 support hyperplanes

Perm 1: 2 1 4 3

Perm 2: 1 3 2 4

Cycle decompositions

Perm 1: (1 2) (3 4) --

Perm 2: (2 3) --

1 orbits of support hyperplanes

Orbit 1 , length 4: 1 2 3 4

Clearly, this rectangle is not a square.

The euclidean automorphism group of a rational polyhedron with vertices, and in particular
the euclidean automorphism group of a pointed cone, is finite and can be computed. For the
cone it would be necessary to find points on the extreme rays that have distance 1 from the
origin. In general this requires the extension of Q by square roots. In principle such extensions
are accessible to Normaliz (see Section 7).

150

The euclidean automorphisms can only be computed if the input defines a polytope – it is not
enough that the quotient by the maximal subspace does this.

6.22.2. Rational automorphisms

Also the computation of rational automorphism groups is restricted to polytopes in Normaliz.
Let us take up the rectangle from pythagoras.in again, this time asking for rational automor-
phisms (pythagoras_rat.in):

amb_space 2

...

RationalAutomorphisms

Result:
Rational automorphism group of order 8

Automorphisms are not integral

**
2 permutations of 4 vertices of polyhedron

Perm 1: 1 3 2 4

Perm 2: 2 1 4 3

This is (hopefully) expected: as an object of rational linear geometry, every rectangle is iso-
morphic to a square whose automorphism group (in any reasonable sense) is of order 8, namely
the dihedral group of this order.

6.22.3. Integral automorphisms

In general, euclidean and rational automorphisms do not map lattice points in polyhedra to
lattice points. If we want to exploit automorphism groups in the computation of lattice points
or enumerative invariants of polyhedra, we can only depend on integral automorphisms.

Consider a rational pointed cone C ⊂ Rd . Let L ⊂ Zd be a sublattice such that L∩QC spans
QC (the situation in which we compute Hilbert bases and Hilbert series). We define AutL(C)
as the group of rational automorphisms of C that map L onto itself. On the one hand, such
an automorphism must permute the Hilbert basis H of the monoid C∩L. On the other hand,
H generates the lattice L as a group, and therefore AutL(C) = AutQ(C;H). It follows that
AutL(C) is a finite group, and that it can be computed as the group of rational automorphisms
permuting a finite set of generators of C.

For a rational polyhedron P we pass to the cone C(P) and the corresponding extension L′ of L.
Then AutL(P) is the subgroup of AutL′(C(P)) of those automorphisms that map P onto itself.
We simply speak of integral automorphisms, assuming that the lattice L is fixed.

If we had to always find the Hilbert basis first, then it would often be very hard to compute
integral automorphism groups, and it would be impossible in the future to use the integral
automorphisms in the computation of Hilbert bases. Fortunately one often gets away without

151

computing the Hilbert basis, and Normaliz only uses it as the last resort (as in the example
below).

Again, let us consider our rectangle, but this time we compute the integral automorphisms
(pythagoras_int.in).

amb_space 2

...

Automorphisms

Note that integral automorphisms are asked for by Automorphisms without an attribute since
integral automorphisms are considered the standard choice for Normaliz.

Since an automorphism of a rectangle must permute the diagonals, and these have different
numbers of lattice points, the integral automorphisms must fix them, and only the point reflec-
tion at the origin remains:

Integral automorphism group of order 2

Automorphisms are integral

**
1 permutations of 4 vertices of polyhedron

Perm 1: 4 3 2 1

...

Note that integral automorphisms in general depend on the choice of the reference lattice L.
For our rectangle R, if we replace the full lattice Z2 by the sublattice L spanned by the vertices,
then AutL(R) is simply the rational automorphism group of the polytope. You can test this by
adding

lattice 4

5 0

-5 0

3 4

-3 -4

to the input file.

6.22.4. Combinatorial automorphisms

For polytopes the combinatorial automorphisms are those permutations of the vertices that
induce an automorphism of the face lattice. For this property It is necessary and sufficient that
they map facets to facets.

As an example we consider the input file pentagon.in:

152

amb_space 2

vertices 5

0 0

1 0

1 1

0.5 1.5

0 1

CombinatorialAutomorphisms 1

2

3

4

5

This is a polygon with 5 vertices. Result (shortened):

combinatorial automorphism group of order 10

Integrality not known

**
2 permutations of 5 vertices of polyhedron

Perm 1: 1 3 2 5 4

Perm 2: 2 1 5 4 3

Cycle decompositions

Perm 1: (2 3) (4 5) --

Perm 2: (1 2) (3 5) --

1 orbits of vertices of polyhedron

Orbit 1 , length 5: 1 2 3 4 5

...

Clearly, every combinatorial automorphism is determined by the values of the two vertices
of an edge, and we can freely choose the vertices of any of the five edges as values. So the
combinatorial automorphisms group has order 10, and is in fact the dihedral group of this
order. (All other automorphism groups of this pentagon have order 2.)

6.22.5. Ambient automorphisms

Roughly speaking, the ambient automorphisms are those permutations of the coordinates of
the ambient space that permute the input vectors. They rae always defined for generator input
and for input of inequalities (without an restriction of the lattice or subspace). These automor-
phisms are always integral and euclidean, but very often they are only a very small subgroup
of the group of all integral/algebraic or euclidean automorphisms . The option for them is

AmbientAutomorphisms

As an example let us take the linear order polytope for S6. If we run

./normaliz -c example/lo6 -i --AmbientAutomorphisms

153

then the files lo6.aut starts with
Ambient(from generators) automorphism group of order 2 (possibly only approximation)

Automorphisms are integral

**
1 permutations of 720 input generators

...

The linear order polytope has 10080 integral automorphisms.

Note that permutations and orbits cannot be computed for factes if the input is by generators
or for extreme rays if it is by inequalities since they are simply not known. However, Normaliz
prints these data for the coordinates. In the cae of lo6

**
1 permutations of 16 Coordinates

Perm 1: 15 14 12 9 5 13 11 8 4 10 7 3 6 2 1 16

Cycle decompositions

Perm 1: (1 15) (2 14) (3 12) (4 9) (6 13) (7 11) --

10 orbits of Coordinates

Orbit 1 , length 2: 1 15

...

Orbit 10 , length 1: 16

Since the input vectors are not necessarily printed verbatim in the output file, they appear at
the end of the aut file:

input generators

1: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

...

6.22.6. Automorphisms from input

For the computation of the input automorphisms Notrmaliz applies the initial coordinate trans-
formations to the input vectors and then computes their permutations that are given by rational
(or algebraic) maps. The option is

InputAutomorphisms

With
./normaliz -c example/lo6 -i --InputAutomorphisms

154

we get indeed the full automorphism group. The permutations of the facets are not computed:

Input(from generators) automorphism group of order 10080 (possibly only approximation)

Automorphisms are integral

**
3 permutations of 720 input generators

...

as you can check in the aut file. As for ambient automorphisms the input vectors are listed at
the end.

Note: After the initial coordinate transformations, Normaliz reaches

(1) a full-dimensional primal cone if the input is by generators, or
(2) a full-dimensional dual cone if the input is by inequalities,

but not more. The passage to the full-dimensional pointed primal (or dual) cone is not possible
at this point. Therefore the automorphisms computed from raw input do in general not map
bijectively to automorphisms of the pointed full-dimensional quotient (or subcone).

Furthermore, in the inhomogeneous case it must be taken into account that Normaliz con-
siders the inequality that makes the homogenizing variable nonnegative as part of the input.
This is sometimes necessary to reach a full-dimensional dual cone after the initial coordinate
transformation.

What has just been said is illustrated by halfspace3inhom-input.in:

amb_space 3

inhom_inequalities 3

1 0 0 1

0 0 1 0

0 0 -1 0

InputAutomorphisms

We expect an automorphism exchanging the second and the third inequality, and we get it:

Input(from inequalities) automorphism group of order 2 (possibly only approximation)

Integrality not known

**
1 permutations of 3 input inequalities

Perm 1: 1 3 2

Cycle decompositions

Perm 1: (2 3) --

2 orbits of input inequalities

Orbit 1 , length 1: 1

Orbit 2 , length 2: 2 3

155

**
input inequalities

1: 1 0 0 1

2: 0 0 1 0

3: 0 0 -1 0

Compute the Automorphisms for this example!

6.23. Precomputed data

The input of precomputed data can be useful if their computation takes long and they can be
used again in subsequent computations. Normaliz takes their correctness for granted since
there is no way of checking it without recomputation. Nevertheless some consistency checks
are done.

We see the main use of precomputed data in interactive access when data had been stored from
previous runs and can be made available again. These data allow the reconstruction of a cone
(and lattice) and its subsequent modification via modifyCone without starting from scratch in
the convex hull computation or vertex enumeration.

A file for future input of precomputed data can be aksed for by the cone property WritePreComp.
See Section 8.4.

6.23.1. Precomputed cones and coordinate transformations

Precomputed input of this type is given by the homogeneous input types extreme_rays and
support_hyperplanes. (There is a third type hilbert_basis_rec_cone; see Section 6.23.3.)
They can only be used together. Moreover, only the following types are allowed with them:

grading, dehomogenization, generated_lattice, maximal_subspace

This implies that data from inhomogeneous computations must be homogenized and then
dehomogenized with explicit dehomogenization (see Section 6.23.2). For algebraic polyhedra
generated_lattice represents a subspace without lattice structure.

Note that support hyperplanes and/or extreme rays do in general not define the object that
Normaliz computes: the final pointed object of the computation lives in a subquotient U/W
where U is a subspace (or sublattice) of the ambient space V and W is a subspace of U .
Internally, this information is contained in two coordinate transformations. It is restored via

(1) generated_lattice for U if U 6=V ,
(2) maximal_subspace for W if W 6= 0.

As an example we consider the input file tame.in which has transparent arithmetic:

156

amb_space 4

cone 1

1 0 0 0

subspace 1

0 1 0 0

congruences 1

1 0 0 0 2

In the output file tame.out we find

1 extreme rays:

2 0 0 0

1 basis elements of maximal subspace:

0 1 0 0

1 support hyperplanes:

1 0 0 0

...

2 basis elements of generated lattice:

2 0 0 0

0 1 0 0

This information is transferred to tame_prec.in as

amb_space 4

extreme_rays 1

2 0 0 0

maximal_subspace 1

0 1 0 0

support_hyperplanes 1

1 0 0 0

generated_lattice 2

2 0 0 0

0 1 0 0

Running it reproduces the same output.

6.23.2. An inhomogeneous example

We use the input file InhomIneq.in already discussed in Section 2.9:

amb_space 2

constraints 3

0 1 >= -1/2

157

0 1 <= 3/2

-1 1 <= 3/2

grading

unit_vector 1

In the output file we find

dehomogenization:

0 0 1

grading:

1 0 0

...

2 vertices of polyhedron:

-4 -1 2

0 3 2

1 extreme rays of recession cone:

1 0 0

3 support hyperplanes of polyhedron (homogenized):

0 -2 3

0 2 1

2 -2 3

The coordinate transformations are trivial in this case. The translation into an input file with
precomputed data is InhomIneq_prec.in:

amb_space 3

extreme_rays 3

-4 -1 2

0 3 2

1 0 0

support_hyperplanes 3

0 -2 3

0 2 1

2 -2 3

grading

1 0 0

dehomogenization

0 0 1

The vectors from the output can be copied. But there are two points to note:

(1) The change of amb_space from 2 to 3.
(2) The extreme_rays unite the vertices of the polyhedron and the extreme rays of the

158

recession cone.

6.23.3. Precomputed Hilbert basis of the recession cone

In applications one may want to compute several polyhedra with the same recession cone. In
these cases it is useful to add the Hilbert basis of the recession cone to the input. An example
is small_inhom_hbrc.in:

amb_space 6

cone 190

6 0 7 0 10 1

...

vertices 4

0 0 0 0 0 0 1

1 2 3 4 5 6 2

-1 3 9 8 7 1 3

0 2 4 5 8 10 7

hilbert_basis_rec_cone 34591

0 0 0 1 6 1 0

0 0 0 1 7 1 0

...

As in the other cases with precomputed data, Normaliz must believe you and the precomputed
Hilbert basis of the recession cone does not define the latter.

It requires inhomogeneous input. Note that it can only be used in the primal algorithm. In the
dual algorithm it is useless and therefore ignored.

7. Algebraic polyhedra

Normaliz can use coefficients from real algebraic extensions of Q. It is clear that the computa-
tions are then restricted to those that do not depend on finite generation of monoids. Whether
algebraic coordinates are needed, is decided when Normaliz reads the input file and checks
whether it defines an algebraic extension of Q embedded into R.

7.1. An example

The icosahedron, one of the platonic solids, needs
√

5 for its coordinates. Via its vertices it
can be defined as follows (icosahedron-v.in, picture by J.-Ph. Labbé):

159

amb_space 3

number_field min_poly (a^2 - 5) embedding [2 +/- 1]

vertices 12

0 2 (a + 1) 4

0 -2 (a + 1) 4

2 (a + 1) 0 4

...

(-a - 1) 0 -2 4

Volume

ModuleGenerators

FVector

EuclideanAutomorphisms

The second line specifies the extension Q[
√

5] of Q over which we want to define the icosahe-
dron. In addition to the minimal polynomial (min_poly or minpoly)we have to give an interval
from which the zero of the polynomial is to be picked. The square brackets are mandatory.
There must be a single zero in that interval. The name of the root can be any single letter
except x or e. The number field specification must follow amb_space. Otherwise Normaliz
believes that you want to work over Z.

Note that the entries of the input file that contain a must be enclosed in round brackets. You
can enter any Q-linear combination of powers of a. We allow * between the coefficient and
the power of a, but it need not appear. The character ^ indicates the exponent. It is mandatory.
So

(a^3-2*a^2 + 4a-1/2)

(a+a-2a-10 + 10*a^0)

are legal numbers in the input. Instead of the delimiters (...) one can also use " and ’ on
both sides so that

"a^3-2*a^2 + 4a-1/2"

’a+a-2a-10 + 10*a^0’

are also legal in matrices. However, in order to stick to standard conventions in mathematical
notation, one must use (...) in symbolic constraints.

The result of the computation by normaliz -c ../example/icosahedron-v starts

Real embedded number field:

min_poly (a^2 - 5) embedding [2.23606797749978969...1835961152572 +/- 5.14e-54]

It indicates that the precision to which the root had to be computed in order to decide all the in-
equalities that have come up in the computation and to compute floating point approximations.
Then we go on as usual:

1 lattice points in polytope

12 vertices of polyhedron

160

0 extreme rays of recession cone

20 support hyperplanes of polyhedron (homogenized)

f-vector:

1 12 30 20 1

embedding dimension = 4

affine dimension of the polyhedron = 3 (maximal)

rank of recession cone = 0 (polyhedron is polytope)

size of triangulation = 18

resulting sum of |det|s = (5/2*a+15/2 ~ 13.090170)

dehomogenization:

0 0 0 1

volume (lattice normalized) = (5/2*a+15/2 ~ 13.090170)

volume (Euclidean) = 2.18169499062

Euclidean automorphism group has order 120

From the vertices below you can compute the radius of the sphere in which the icosahedron is
inscribed and check that it is < 1. So no surprise:

1 lattice points in polytope:

0 0 0 1

12 vertices of polyhedron:

(-1/4*a-1/4 ~ -0.809017) 0 (-1/2 ~ -0.500000) 1

(-1/4*a-1/4 ~ -0.809017) 0 (1/2 ~ 0.500000) 1

...

(1/4*a+1/4 ~ 0.809017) 0 (1/2 ~ 0.500000) 1

0 extreme rays of recession cone:

20 support hyperplanes of polyhedron (homogenized):

(-a+1 ~ -1.236068) (-2*a+4 ~ -0.472136) 0 1

(-a+1 ~ -1.236068) (2*a-4 ~ 0.472136) 0 1

...

(a-1 ~ 1.2361) (2*a-4 ~ 0.47214) 0 1

Now every nonintegral number appears in round brackets together with its approximation as a
decimal fraction.

The data of the integer hull cone are printed into a separate file as usual.

161

The order of the automorphism group of this regular polyhedron is exactly what we learn in
geometry.

The matrices in the (optional) output file(s) can be used as input; see perm7_d2_dual.in. The
input routine skips all characters from ~ when it reads a number.

For an example with precomputed data see icosahedron_prec.in.

7.2. Input

The following input types are NOT allowed for algebraic polytopes:

lattice strict_inequalities strict_signs open_facets

cone_and_lattice inhom_congruences lattice_ideal offset

congruences hilbert_basis_rec_cone rees_algebra rational_lattice

rational_offset

The only other restriction is that decimal fractions and floating point numbers are not allowed
in the input file. The input format for field coefficients is explained in the example above.

It may seem contradictory, but saturation are allowed. It must be interpreted as a generating
set for a subspace that is intersected with all the objects defined by other input items.

With coordinates in number fields, Normaliz does not look for an implicit grading, but it can
use an explicit grading for lattice point or volume computations in the homogeneous case.
NoGradingDenom is set automatically. For inhomogeneous input a grading makes no sense in
the number field case and is therefore forbidden.

7.3. Computations

The only (main) computation goals and algorithmic variants allowed are:

SupportHyperplanes Sublattice LatticePoints LatticePointTriangulation

NumberLatticePoints IntegerHull VerticesFloat TriangulationSize

Triangulation ProjectCone KeepOrder ConeDecomposition

BottomDecomposition SuppHypsFloat NoBottomDec TriangulationDetSum

GradingIsPositive DefaultMode IsPointed EuclideanAutomorphisms

FVector FaceLattice Automorphisms CombinatorialAutomorphisms

Incidence Deg1Elements IsEmptySemiOpen AllGeneratorsTriangulation

It may seem paradoxical that Sublattice appears here. As in the true lattice case, the Sublattice
Representation is the coordinate transformation used by Normaliz. Over a field F there is
no need for the annihilator c, and one simply has a pair of linear maps Fr→ Fd → Fr whose
composition is the identity of Fr. Of course, congruences and external index make no sense
anymore.

162

Deg1Elements, LatticePoints and IntegerHull are restricted to (bounded) polytopes since
polyhedra in general lack the necessary finiteness properties. The lattice of reference is the
full integral lattice.

Automorphisms is interpreted as algebraic automorphisms. They are defined in the same way
as rational automorphisms of rational polytopes. One has only to replace the field of ra-
tional numbers by the number field defined for the polytope. EuclideaAutomorphisms and
CombinatorialAutomorphisms have the usual meaning.

Volume is restricted to full-dimensional polytopes. In the homogeneous case the grading must
have integer coprime coefficients.

The only algorithmic variants that appear concern the bottom decomposition. Implicit or
explicit DefaultMode is interpreted as SupportHyperplanes.

Volumes are computed by triangulation and lattice points by project-and-lift.

For the control of computations and communication with interfaces the following are allowed:

Generators ExtremeRays VerticesOfPolyhedron MaximalSubspace

RecessionRank AffineDim Rank EmbeddingDim

IsInhomogeneous RenfVolume EuclideanVolume ModuleGenerators

Dehomogenization NoGradingDenom Equations

8. Optional output files

Note that the options -T, Triangulation and -y, StanleyDec also write files in addition
to <project>.out, as well as FaceLattice, Incidence or the various automorphism groups.
Also symmetrization, IntegerHull, and ProjectCone produce extra output files for the de-
rived cones. But these are not optional.

The main purpose of the optional output files is to provide an interface to Normaliz by files
that can more easily be parsed than the main output file.

When one of the options Files, -f or AllFiles, -a is activated, Normaliz writes additional
optional output files whose names are of type <project>.<type>. Moreover one can select the
optional output files individually on the command line. Most of these files contain matrices in
a simple format:

<m>

<n>

<x_1>

...

<x_m>

where each row has <n> entries. Exceptions are the files with suffixes cst, inv, esp.

Note that the files are only written if they would contain at least one row.

As pointed out in Section 5.5, the optional output files for the integer hull are the same as for
the original computation, as far as their content has been computed.

163

8.1. The homogeneous case

The option -f makes Normaliz write the following files:

gen contains the Hilbert basis. If you want to use this file as an input file and reproduce the
computation results, then you must make it a matrix of type cone_and_lattice (and
add the dehomogenization in the inhomogeneous case).

cst contains the constraints defining the cone and the lattice in the same format as they
would appear in the input: matrices of types constraints following each other. Each
matrix is concluded by the type of the constraints. Empty matrices are indicated by 0 as
the number of rows. Therefore there will always be at least 3 matrices.
If a grading is defined, it will be appended. Therefore this file (with suffix in) as input
for Normaliz will reproduce the Hilbert basis and all the other data computed, at least
in principle.
In the case of number field coordinates this file must be transformed from Normaliz 2
input format to Normaliz 3 format by hand before it can be used for input.

inv contains all the information from the file out that is not contained in any of the other
files.

If -a is activated, then the following files are written additionally:

ext contains the extreme rays of the cone.
ht1 contains the degree 1 elements of the Hilbert basis if a grading is defined.

egn,esp These contain the Hilbert basis and support hyperplanes in the coordinates with re-
spect to a basis of E. esp contains the grading and the dehomogenization in the coordi-
nates of E. Note that no equations for C∩E or congruences for E are necessary.

lat contains the basis of the lattice E.
mod contains the module generators of the integral closure modulo the original monoid.
msp contains the basis of the maximal subspace.

In order to select one or more of these files individually, add an option of type --<suffix> to
the command line where <suffix> can take the values

gen, cst, inv, ext, ht1, egn, esp, lat, mod, msp, typ

The type typ is not contained in Files or AllFiles since it can be extremely large. It is of
the matrix format described above. It is the product of the matrices corresponding to egn and
the transpose of esp. In other words, the linear forms representing the support hyperplanes of
the cone C are evaluated on the Hilbert basis. The resulting matrix, with the generators corre-
sponding to the rows and the support hyperplanes corresponding to the columns, is written to
this file.

The suffix typ is motivated by the fact that the matrix in this file depends only on the isomor-
phism type of monoid generated by the Hilbert basis (up to row and column permutations). In
the language of [7] it contains the standard embedding.

Note: the explicit choice of an optional output file does not imply a computation goal. Out-
put files that would contain unknown data are simply not written without a warning or error
message.

164

8.2. Modifications in the inhomogeneous case

The optional output files are a subset of those that can be produced in the homogeneous case.
The main difference is that the generators of the solution module and the Hilbert basis of the
recession monoid appear together in the file gen. They can be distinguished by evaluating the
dehomogenization on them (simply the last component with inhomogeneous input), and the
same applies to the vertices of the polyhedron and extreme rays of the recession cone. The
file cst contains the constraints defining the polyhedron and the recession cone in conjunction
with the dehomogenization, which is also contained in the cst file, following the constraints.

In the file with suffix ext the vertices of polyhedron are listed first, followed by the extreme
rays of the recession cone.

With -a the files egn and esp are produced. These files contain gen and the support hyper-
planes of the homogenized cone in the coordinates of E, as well as the dehomogenization.

8.3. Algebraic polyhedra

Some entries in the inv file are listed as integer, even if they are not integer numbers. But all
entries make sense as elements of the algebraic number field.

8.4. Precomputed data for future input

One can generate a file with the data needed for an input file with precomputed data of the
cirrent cone using the cone property

WritePreComp

The suffix is precomp.in. It contains the data that can (and must) go into a file redefining the
present cone (except hilbert_basis_rec_cone). .

9. Performance

9.1. Parallelization

The executables of Normaliz have been compiled for parallelization on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” time of the computations considerably,
even on relatively small systems. However, one should not underestimate the administrative
overhead involved.

• It is not a good idea to use parallelization for very small problems.
• On multi-user systems with many processors it may be wise to limit the number of

threads for Normaliz somewhat below the maximum number of cores.

By default, Normaliz limits the number of threads to 8. One can override this limit by the
Normaliz option -x (see Section 5.3).

165

Another way to set an upper limit to the number of threads is via the environment variable
OMP_NUM_THREADS:

export OMP_NUM_THREADS=<T> (Linux/Mac)

or

set OMP_NUM_THREADS=<T> (Windows)

where <T> stands for the maximum number of threads accessible to Normaliz. For example,
we often use

export OMP_NUM_THREADS=20

on a multi-user system system with 24 cores.

Limiting the number of threads to 1 forces a strictly serial execution of Normaliz.

The paper [11] contains extensive data on the effect of parallelization. On the whole Normaliz
scales very well. However, the dual algorithm often performs best with mild parallelization,
say with 4 or 6 threads.

9.2. Running large computations

Note: This section discusses computations in primal mode, and reflects the state of Normaliz
discussed in [11]. Especially the computation of lattice points in polytopes and of volumes
have been implemented in oher algorithms that are often much faster. However, for Hilbert
bases and Hilbert series only refinements of the primal mode have been realized.

Normaliz can cope with very large examples, but it is usually difficult to decide a priori
whether an example is very large, but nevertheless doable, or simply impossible. Therefore
some exploration makes sense. The following applies to the primal algorithm.

See [11] for some very large computations. The following hints reflect the authors’ experience
with them.

(1) Run Normaliz with the option -cs and pay attention to the terminal output. The number
of extreme rays, but also the numbers of support hyperplanes of the intermediate cones are
useful data.

(2) In many cases the most critical size parameter for the primal algorithm is the number of
simplicial cones in the triangulation. It makes sense to determine it as the next step. Even with
the fastest potential evaluation (option -v or TriangulationDetSum), finding the triangulation
takes less time, say by a factor between 3 and 10. Thus it makes sense to run the example with
-t in order to explore the size.

As you can see from [11], Normaliz has successfully evaluated triangulations of size≈ 5 ·1011

in dimension 24.

166

(3) Another critical parameter are the determinants of the generator matrices of the simplicial
cones. To get some feeling for their sizes, one can restrict the input to a subset (of the extreme
rays computed in (1)) and use the option -v or the computation goal TriangulationDetSum if
there is no grading.

The output file contains the number of simplicial cones as well as the sum of the absolute
values of the determinants. The latter is the number of vectors to be processed by Normaliz in
triangulation based calculations.

The number includes the zero vector for every simplicial cone in the triangulation. The zero
vector does not enter the Hilbert basis calculation, but cannot be neglected for the Hilbert
series.

Normaliz has mastered calculations with > 1015 vectors.

(4) If the triangulation is small, we can add the option -T in order to actually see the triangu-
lation in a file. Then the individual determinants become visible.

(5) If a cone is defined by inequalities and/or equations consider the dual mode for Hilbert
basis calculation, even if you also want the Hilbert series.

(6) The size of the triangulation and the size of the determinants are not dangerous for memory
by themselves (unless -T or -y are set). Critical magnitudes can be the number of support
hyperplanes, Hilbert basis candidates, or degree 1 elements.

10. Distribution and installation

10.1. Docker image

The easiest and absolutely hassle free access to Normaliz is via its Docker image. To run it,
you must first install Docker on your system. This is easy on up-to-date versions of the three
major platforms. After installation you can issue the command

docker run -ti normaliz/normaliz

You may have to prefix it with sudo. This will download the Docker image if it is not yet
present and open a Docker container. As a result you will get a Linux terminal. Normaliz
is installed in the standard location /usr/local. Moreover, the source is contained in the
subdirectory Normaliz/source of the home directory. (Your username is norm.) In the Docker
container, Normaliz is the Normaliz directory (independently of the version number).

Try

normaliz -c Normaliz/example/small

as a first test.

Of course, you want to make your data available to Normaliz in the container. Here is an
example:

167

docker run -it -v /home/winfried/my_normaliz:/home/norm/example normaliz/normaliz

Here /home/winfried/my_normaliz is the (absolute!) path to the directory that I want to
mount into the Docker container and /home/norm/example is the (absolute!) path to the loca-
tion in the container where it should be mounted.

The command above downloads the image labeled “latest”. There are also images on Docker-
hub with version numbers. You can slo access them adding the sufix :<version> to normaliz/normaliz.

The Docker image contains a full installation including PyNormaliz.

10.2. Binary release

We provide binary releases for Windows, Linux and Mac. Follow the instructions in

https://normaliz.uos.de/download/.

They guide you to our GitHub repository

https://github.com/Normaliz/Normaliz/releases.

Download the archive file corresponding to your system normaliz-3.9.3_<systemname>.zip

in a directory of your choice and unzip it. This process will create the Normaliz directory and
store the Normaliz executable in it. In case you want to run Normaliz from the command line
or use it from other systems, you may have to copy the executables to a directory in the search
path for executables or update your search path.

The From version 3.9.3 on, MS Windows executable is compiled with all optional packages.

Note:

1. The Linux binary normaliz and the MS Windows binary normaliz.exe are fully static
executables.

2. The Mac OS and the MS Windows binaries cannot be statically linked in the absolute
sense. The MS Windows binary depends only on system DLLs. The Mac OS binary
depends only on Mac OS system libraries and libomp.dylib (contained in the zip file)
which makes parallelization possible. This dynamic library must be kept in the same
directory as the binary.

Unzipping creates the following files and subdirectories in the Normaliz directory:

• In the Normaliz directory you should find jNormaliz.jar, and the binary files as indi-
cated above. Furthermore COPYING.
• The subdirectory doc contains the file you are reading and further documentation.
• In the subdirectory example there are the input files for some examples. It contains all

named input files of examples of this manual.
• The subdirectory Singular contains the SINGULAR library normaliz.lib and a PDF

file with documentation.

168

https://normaliz.uos.de/download/
https://github.com/Normaliz/Normaliz/releases

• The subdirectory Macaulay2 contains the MACAULAY2 package Normaliz.m2.
• The subdirectory lib contains libraries for jNormaliz.

10.3. Source package

In order to build Normaliz yourself, navigate to our GitHub repository

https://github.com/Normaliz/Normaliz/releases.

and download the source package normaliz-3.9.3.zip (also available as .tar.gz) contains
the source files, installation scripts, examples, documentation, the test suite and PyNormaliz.

Then unzip the downloaded file in a directory of your choice and expand it. (If you have
installed a binary package, choose the same directory.) This process will create a directory
normaliz-3.9.3 and several subdirectories in it.

If you build Normaliz yourself, the build process will create further subdirectories build,
nmz_opt_lib and local (with the default settings).

10.4. Conda

The platform independent package manager Conda provides executables for all three operating
systems. See

https://github.com/conda-forge/normaliz-feedstock

In addition to the binaries you get the files that are usually installed: header files and libraries.

10.5. Cloning the GitHub repository

Another way to download the Normaliz source is cloning the repository from GitHub by

git clone https://github.com/Normaliz/Normaliz.git

The Normaliz directory is then called Normaliz. You may need

sudo apt-get install autoconf libtool

if you want to build Normaliz by autotools. To this end change to the Normaliz directory and
run

./bootstrap.sh

After this step you can follow the instruction in the next section.

Note that he GitHub repository Normaliz/Normaliz does not contain PyNormaliz. You can
clone them from the repository Normaliz/PyNormaliz.

169

https://github.com/Normaliz/Normaliz/releases
https://github.com/conda-forge/normaliz-feedstock

11. Building Normaliz yourself

We recommend building Normaliz through the install scripts described below. They use the
autotools scripts have been written by Matthias Köppe. The Normaliz team thanks him
cordially for his generous help.

If you don’t want to use the Normaliz install scripts, you can of course take the usual configure-
make-make install path. The dependencies of Normaliz on external packages are listed in
INSTALL.

11.1. Prerequisites

We require a compiler supporting C++14:

• GNU g++ 5,
• clang++ 3.4,
• Intel icpc 16.0

The mentioned compilers are also able to handle OpenMP 3.0, with the exception of clang++,
there the first OpenMP support was introduced in 3.7.

For compiling Normaliz the following libraries are needed:

• GMP including the C++ wrapper (libgmpxx and libgmp)

We will only discuss how to build Normaliz with the install scrips in the distribution. See the
file INSTALL for additional information.

Any optional package that you want to use, must be installed before the compilation of Nor-
maliz, independently of the method used for building Normaliz. The installation scripts men-
tioned below make and use directories within the Normaliz directory.

11.1.1. Linux

The standard compiler choice on Linux is g++. We do no not recommend clang++ since its
support for OpenMP is not as comprehensive as that of g++.

On Ubuntu we suggest

sudo apt-get install tar g++ libgmp-dev wget make libboost-all-dev

for the basic installation of the required libraries (plus compiler).

11.1.2. Mac OS X

Currently Apple does not supply a compiler which supports OpenMP. The install scripts dis-
cussed below require LLVM 3.9 or newer from Homebrew. See https://brew.sh/ from where
you can also download GMP:

170

https://brew.sh/

brew install gmp llvm wget boost automake

It may be necessary to replace install by reinstall since the Xcode compiler may be newer
that the one from Homebrew.

You also need to download and install the Xcode Command Line Tools from the AppStore:

xcode-select --install

11.2. Normaliz at a stroke

Navigate to the Normaliz directory. The command

./install_normaliz_with_eantic.sh

installs the all packages that are needed for the computation of rational and algebraic polyhedra
(including CoCoALib and Flint) and does the full compilation.

If you don’t want algebraic polyhedra, call

./install_normaliz_with_opt.sh

It downloads CoCoALib, Flint and nauty and compiles Normaliz.

The sources of the optional packages are downloaded to the subdirectory nmz_opt_lib of
the Normaliz directory. They are installed in the subdirectory local (imitating /usr/local)
where they exist in static and dynamic versions (except CoCoALib and nauty that can only be
built statically).

If you don’t want the optional packages or if you have them properly installed,

./install_normaliz.sh

compiles Normaliz, using the optional packages that it can find.

The library libnormaliz is compiled statically and shared. It is installed in local as well.

The binary normaliz is stored in local/bin, but it is also copied to the Normaliz directory.It
is statically linked by default.

Remarks:

(1) If you want a global installation (and have the rights to do it), you can ask for
sudo cp -r local /usr

at the end.
(2) Another way to a global installation (or to an installation in a place of your choice) is to

use
export NMZ_PREFIX=<your choice>

./install_normaliz_...

171

For the typical choice /usr/local you need superuser rights (as in (1)). Note that
NMZ_PREFIX must be an absolute path name.

(3) The scripts compile a fully static binary under Linux and an “almost” static binary under
Mac OS. You can choose a dynamically linked binary by

export NMZ_SHARED=yes

./install_normaliz_...

NMZ_SHARED is set automatically on Linux if a compiler from the clang family is used
since a statically linked binary cannot be built by them (libomp.a is missing).

(4) The install scripts can be further customized. Have a look at them or at INSTALL.
(5) Precise information on the versions of the optional packages that should be used with

Normaliz 3.9.3 is contained in INSTALL as well.
(6) The install script creates a directory for VPATH builds,

build

It is not removed by the script so that you can use it for further make actions.
(7) To run the test suite, go to build and run make check. For more information on the test

suite see INSTALL.

11.3. Packages for rational polyhedra

11.3.1. CoCoALib

Normaliz can be built without CoCoALib, which is however necessary for the computation of
integrals and weighted Ehrhart series and, hence, for symmetrization. If you don’t want to use
the scripts in Section 11.2, but nevertheless want to compile Normaliz with CoCoALib, install
CoCoALib first by navigating to the Normaliz directory and typing the command

install_scripts_opt/install_nmz_cocoa.sh

CoCoALib is downloaded and compiled as described above.

If you want to use a preinstalled version of CoCoALib: for parallelization it must be config-
ured as

./configure --threadsafe-hack --no-boost

11.3.2. nauty

Normaliz can be built without nauty, which is however necessary for the computation of auto-
morphism groups. If you don’t want to use the scripts in Section 11.2, but nevertheless want
to compile Normaliz with nauty, install nauty first by navigating to the Normaliz directory and
typing the command

install_scripts_opt/install_nmz_nauty.sh

nauty is downloaded and compiled as described above.

172

You can or course use a preinstalled version of nauty.

We thank Brendan McKay for his help in the integration of nauty to Normaliz.

11.3.3. Hash libary

for the computation of SHA256 hash values Normaliz uses by Stephan Brumme:

install_scripts_opt/install_nmz_hash-library.sh

11.3.4. Flint

Flint does not extend the functionality of Normaliz (for rational polytopes), and is therefore
truly optional. However, the ultrafast polynomial arithmetic of Flint is very useful if quasipoly-
nomials with large periods come up in the computation of Hilbert series or weighted Ehrhart
series. If you don’t want to use the scripts in Section 11.2, but nevertheless want to compile
Normaliz with Flint, install Flint (and its prerequisite MPFR) by navigating to the Normaliz
directory and entering the commands

install_scripts_opt/install_nmz_mpfr.sh

install_scripts_opt/install_nmz_flint.sh

11.4. Packages for algebraic polyhedra

The basic classes for algebraic polyhedra are defined in the package

e-antic by V. Delecroix (https://github.com/flatsurf/e-antic).

In its turn it is based on

(1) Flint maintained by W. B. Hart (https://www.flintlib.org/),
(2) antic by W. B. Hart, (https://github.com/wbhart/antic),
(3) arb by F. Johansson (https://arblib.org/).

The dependence on antic and arb is only through e-antic.

For Normaliz it is useless to install any of them separately (except Flint, see above). Again, if
you don’t want to use the ready-made install scripts for Normaliz as a whole, you can install
e-antic and its prerequisites separately by

install_scripts_opt/install_eantic_with_prerequisites.sh

11.5. MS Windows

We compile Normaliz for MS Windows 64 under MSYS2. See the last section of INSTALL for
the details.

173

https://github.com/flatsurf/e-antic
https://www.flintlib.org/
https://github.com/wbhart/antic
https://arblib.org/

12. Copyright and how to cite

Normaliz 3.1 is free software licensed under the GNU General Public License, version 3. You
can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see https://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which it has been used: been used:

W. Bruns, B. Ichim, C. Söger and U. von der Ohe: Normaliz. Algorithms for rational cones
and affine monoids. Available at https://normaliz.uos.de

The corresponding \bibitem:

\bibitem{Normaliz} W.~Bruns, B.~Ichim, C.~S\"oger and U.~von~der~Ohe:

Normaliz. Algorithms for rational cones and affine monoids.

Available at \url{https://normaliz.uos.de}.

A BibTeX entry:

@Misc{Normaliz,

author = {W. Bruns and B. Ichim, C. S\"oger and U. von der Ohe},

title = Normaliz. Algorithms for rational cones and affine monoids,

howpublished ={Available at \url{https://normaliz.uos.de}}

It is now customary to evaluate mathematicians by such data as numbers of publications,
citations and impact factors. The data bases on which such dubious evaluations are based do
not list mathematical software. Therefore we ask you to cite the article [11] in addition. This
is very helpful for the younger members of the team.

174

https://www.gnu.org/licenses/
https://normaliz.uos.de

A. Mathematical background and terminology

For a coherent and thorough treatment of the mathematical background we refer the reader
to [7].

A.1. Polyhedra, polytopes and cones

An affine halfspace of Rd is a subset given as

H+
λ
= {x : λ (x)≥ 0},

where λ is an affine form, i.e., a non-constant map λ : Rd→R, λ (x) = α1x1+ · · ·+αdxd +β

with α1, . . . ,αd,β ∈ R. If β = 0 and λ is therefore linear, then the halfspace is called linear.
The halfspace is rational if λ is rational, i.e., has rational coordinates. If λ is rational, we
can assume that it is even integral, i.e., has integral coordinates, and, moreover, that these are
coprime. Then λ is uniquely determined by H+

λ
. Such integral forms are called primitive, and

the same terminology applies to vectors.

Definition 1. A (rational) polyhedron P is the intersection of finitely many (rational) halfs-
paces. If it is bounded, then it is called a polytope. If all the halfspaces are linear, then P is a
cone.

The dimension of P is the dimension of the smallest affine subspace aff(P) containing P.

A support hyperplane of P is an affine hyperplane H that intersects P, but only in such a way
that H is contained in one of the two halfspaces determined by H. The intersection H ∩P is
called a face of P. It is a polyhedron (polytope, cone) itself. Faces of dimension 0 are called
vertices, those of dimension 1 are called edges (in the case of cones extreme rays), and those
of dimension dim(P)−1 are facets.

When we speak of the support hyperplanes of P, then we mean those intersecting P in a facet.
Their halfspaces containing P cut out P from aff(P). If dim(P) = d, then they are uniquely
determined (up to a positive scalar).

The constraints by which Normaliz describes polyhedra are

(1) linear equations for aff(P) and
(2) linear inequalities (simply called support hyperplanes) cutting out P from aff(P).

In other words, the constraints are given by a linear system of equations and inequalities,
and a polyhedron is nothing else than the solution set of a linear system of inequalities and
equations. It can always be represented in the form

Ax≥ b, A ∈ Rm×d,b ∈ Rm,

if we replace an equation by two inequalities.

175

A.2. Cones

The definition describes a cone by constraints. One can equivalently describe it by generators:

Theorem 2 (Minkowski-Weyl). The following are equivalent for C ⊂ Rd;

1. C is a (rational) cone;

2. there exist finitely many (rational) vectors x1, . . . ,xn such that

C = {a1x1 + · · ·+anxn : a1, . . . ,an ∈ R+}.

By R+ we denote the set of nonnegative real numbers; Q+ and Z+ are defined in the same
way.

The conversion between the description by constraints and that by generators is one of the
basic tasks of Normaliz. It uses the Fourier-Motzkin elimination.

Let C0 be the set of those x ∈ C for which −x ∈ C as well. It is the largest vector subspace
contained in C. A cone is pointed if C0 = 0. If a rational cone is pointed, then it has uniquely
determined extreme integral generators. These are the primitive integral vectors spanning the
extreme rays. These can also be defined with respect to a sublattice L of Zd , provided C is
contained in RL. If a cone is not pointed, then Normaliz computes the extreme rays of the
pointed C/C0 and lifts them to C. (Therefore they are only unique modulo C0.)

The dual cone C∗ is given by

C∗ = {λ ∈ (Rd)∗ : λ (x)≥ 0 for all x ∈C}.

Under the identification Rd = (Rd)∗∗ one has C∗∗ =C. Then one has

dimC0 +dimC∗ = d.

In particular, C is pointed if and only if C∗ is full dimensional, and this is the criterion for
pointedness used by Normaliz. Linear forms λ1, . . . ,λn generate C∗ if and only if C is the
intersection of the halfspaces H+

λi
. Therefore the conversion from constraints to generators

and its converse are the same task, except for the exchange of Rd and its dual space.

A.3. Polyhedra

In order to transfer the Minkowski-Weyl theorem to polyhedra it is useful to homogenize
coordinates by embedding Rd as a hyperplane in Rd+1, namely via

κ : Rd → Rd+1, κ(x) = (x,1).

If P is a (rational) polyhedron, then the closure of the union of the rays from 0 through the
points of κ(P) is a (rational) cone C(P), called the cone over P. The intersection C(P)∩(Rd×
{0}) can be identified with the recession (or tail) cone

rec(P) = {x ∈ Rd : y+ x ∈ P for all y ∈ P}.

176

It is the cone of unbounded directions in P. The recession cone is pointed if and only if P has
at least one bounded face, and this is the case if and only if it has a vertex.

The theorem of Minkowski-Weyl can then be generalized as follows:

Theorem 3 (Motzkin). The following are equivalent for a subset P 6= /0 of Rd:

1. P is a (rational) polyhedron;

2. P = Q+C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the convex hull of its vertices, and C = rec(P)
is uniquely determined.

The convex hull of a subset X ∈ Rd is

conv(X) = {a1x1 + · · ·+anxn : n≥ 1,x1, . . . ,xn ∈ X ,a1, . . . ,an ∈ R+,a1 + · · ·+an = 1}.

Clearly, P is a polytope if and only if rec(P) = {0}, and the specialization to this case one
obtains Minkowski’s theorem: a subset P of Rd is a polytope if and only if it is the convex
hull of a finite set. A lattice polytope is distinguished by having integral points as vertices.

Normaliz computes the recession cone and the polytope Q if P is defined by constraints.
Conversely it finds the constraints if the vertices of Q and the generators of C are specified.

Suppose that P is given by a system

Ax≥ b, A ∈ Rm×d, b ∈ Rm,

of linear inequalities (equations are replaced by two inequalities). Then C(P) is defined by the
homogenized system

Ax− xd+1b≥ 0

whereas the rec(P) is given by the associated homogeneous system

Ax≥ 0.

It is of course possible that P is empty if it is given by constraints since inhomogeneous
systems of linear equations and inequalities may be unsolvable. By abuse of language we call
the solution set of the associated homogeneous system the recession cone of the system.

Via the concept of dehomogenization, Normaliz allows for a more general approach. The
dehomogenization is a linear form δ on Rd+1. For a cone C̃ in Rd+1 and a dehomogenization
δ , Normaliz computes the polyhedron P = {x∈ C̃ : δ (x) = 1} and the recession cone C = {x∈
C̃ : δ (x) = 0}. In particular, this allows other choices of the homogenizing coordinate. (Often
one chooses x0, the first coordinate then.)

In the language of projective geometry, δ (x) = 0 defines the hyperplane at infinity.

177

A.4. Affine monoids

An affine monoid M is a finitely generated submonoid of Zd for some d ≥ 0. This means:
0 ∈M, M+M ⊂M, and there exist x1, . . . ,xn such that

M = {a1x1 + · · ·+anxn : a1, . . . ,an ∈ Z+}.

We say that x1, . . . ,xn is a system of generators of M. A monoid M is positive if x ∈ M and
−x ∈M implies x = 0. An element x in a positive monoid M is called irreducible if it has no
decomposition x = y+ z with y,z ∈ M, y,z 6= 0. The rank of M is the rank of the subgroup
gp(M) of Zd generated by M. (Subgroups of Zd are also called sublattices.) For certain aspects
of monoid theory it is very useful (or even necessary) to introduce coefficients from a field K
(or a more general commutative ring) and consider the monoid algebra K[M].

Theorem 4 (van der Corput). Every positive affine monoid M has a unique minimal system of
generators, given by its irreducible elements.

We call the minimal system of generators the Hilbert basis of M. Normaliz computes Hilbert
bases of a special type of affine monoid:

Theorem 5 (Gordan’s lemma). Let C ⊂ Rd be a (pointed) rational cone and let L ⊂ Zd be a
sublattice. Then C∩L is a (positive) affine monoid.

The monoids M =C∩L of the theorem have the pleasant property that the group of units M0
(i.e., elements whose inverse also belongs to M) splits off as a direct summand. Therefore
M/M0 is a well-defied affine monoid. If M is not positive, then Normaliz computes a Hilbert
basis of M/M0 and lifts it to M.

Let M ⊂ Zd be an affine monoid, and let N ⊃M be an overmonoid (not necessarily affine), for
example a sublattice L of Zd containing M.

Definition 6. The integral closure (or saturation) of M in N is the set

M̂N = {x ∈ N : kx ∈M for some k ∈ Z,k > 0}.

If M̂N = M, one calls M integrally closed in N.

The integral closure M of M in gp(M) is its normalization. M is normal if M = M.

The integral closure has a geometric description:

Theorem 7.
M̂N = cone(M)∩N.

Combining the theorems, we can say that Normaliz computes integral closures of affine
monoids in lattices, and the integral closures are themselves affine monoids as well. (More
generally, M̂N is affine if M and N are affine.)

178

In order to specify the intersection C∩ L by constraints we need a system of homogeneous
inequalities for C. Every sublattice of Zd can be written as the solution set of a combined sys-
tem of homogeneous linear diophantine equations and a homogeneous system of congruences
(this follows from the elementary divisor theorem). Thus C∩ L is the solution set of a ho-
mogeneous linear diophantine system of inequalities, equations and congruences. Conversely,
the solution set of every such system is a monoid of type C∩L.

In the situation of Theorem 7, if gp(N) has finite rank as a gp(M)-module, M̂N is even a finitely
generated module over M. I.e., there exist finitely many elements y1, . . . ,ym ∈ M̂N such that
M̂N =

⋃m
i=1 M + yi. Normaliz computes a minimal system y1, . . . ,ym and lists the nonzero

yi as a system of module generators of M̂N modulo M. We must introduce coefficients to
make this precise: Normaliz computes a minimal system of generators of the K[M]-module
K[M̂N]/K[M].

A.5. Affine monoids from binomial ideals

Let U be a subgroup of Zn. Then the natural image M of Zn
+ ⊂ Zn in the abelian group

G = Zn/U is a submonoid of G. In general, G is not torsionfree, and therefore M may not
be an affine monoid. However, the image N of M in the lattice L = G/torsion(G) is an affine
monoid. Given U , Normaliz chooses an embedding L ↪→ Zr, r = n− rankU , such that N
becomes a submonoid of Zr

+. In general there is no canonical choice for such an embedding,
but one can always find one, provided N has no invertible element except 0.

The typical starting point is an ideal J ⊂ K[X1, . . . ,Xn] generated by binomials

Xa1
1 · · ·X

an
n −Xb1

1 · · ·X
bn
n .

The image of K[X1, . . . ,Xn] in the residue class ring of the Laurent polynomial ring S =
K[X±1

1 , . . . ,X±1
n] modulo the ideal JS is exactly the monoid algebra K[M] of the monoid M

above if we let U be the subgroup of Zn generated by the differences

(a1, . . . ,an)− (b1, . . . ,bn).

Ideals of type JS are called lattice ideals if they are prime. Since Normaliz automatically
passes to G/torsion(G), it replaces JS by the smallest lattice ideal containing it.

A.6. Lattice points in polyhedra

Let P ⊂ Rd be a rational polyhedron and L ⊂ Zd be an affine sublattice, i.e., a subset w+L0
where w ∈ Zd and L0 ⊂ Zd is a sublattice. In order to investigate (and compute) P∩L one
again uses homogenization: P is extended to C(P) and L is extended to L = L0 +Z(w,1).
Then one computes C(P)∩L . Via this “bridge” one obtains the following inhomogeneous
version of Gordan’s lemma:

179

Theorem 8. Let P be a rational polyhedron with vertices and L = w+L0 an affine lattice as
above. Set recL(P) = rec(P)∩L0. Then there exist x1, . . . ,xm ∈ P∩L such that

P∩L = {(x1 + recL(P))∩·· ·∩ (xm + recL(P))}.

If the union is irredundant, then x1, . . . ,xm are uniquely determined.

The Hilbert basis of recL(P) is given by {x : (x,0)∈Hilb(C(P)∩L)} and the minimal system
of generators can also be read off the Hilbert basis of C(P)∩L : it is given by those x for which
(x,1) belongs to Hilb(C(P)∩L). (Normaliz computes the Hilbert basis of C(P)∩L only at
“levels” 0 and 1.)

We call recL(P) the recession monoid of P with respect to L (or L0). It is justified to call P∩L
a module over recL(P). In the light of the theorem, it is a finitely generated module, and it has
a unique minimal system of generators.

After the introduction of coefficients from a field K, recL(P) is turned into an affine monoid
algebra, and N = P∩L into a finitely generated torsionfree module over it. As such it has a
well-defined module rank mrank(N), which is computed by Normaliz via the following com-
binatorial description: Let x1, . . . ,xm be a system of generators of N as above; then mrank(N)
is the cardinality of the set of residue classes of x1, . . . ,xm modulo recL(P).

Clearly, to model P∩ L we need linear diophantine systems of inequalities, equations and
congruences which now will be inhomogeneous in general. Conversely, the set of solutions of
such a system is of type P∩L.

A.7. Hilbert series and multiplicity

Normaliz can compute the Hilbert series and the Hilbert (quasi)polynomial of a graded monoid.
A grading of a monoid M is simply a homomorphism deg : M→ Zg where Zg contains the
degrees. The Hilbert series of M with respect to the grading is the formal Laurent series

H(t) = ∑
u∈Zg

#{x ∈M : degx = u}tu1
1 · · · t

ug
g = ∑

x∈M
tdegx,

provided all sets {x ∈ M : degx = u} are finite. At the moment, Normaliz can only handle
the case g = 1, and therefore we restrict ourselves to this case. We assume in the following
that degx > 0 for all nonzero x ∈ M and that there exists an x ∈ gp(M) such that degx = 1.
(Normaliz always rescales the grading accordingly – as long as no module N is involved.) In
the case of a nonpositive monoid, these conditions must hold for M/M0, and its Hilbert series
is considered as the Hilbert series of M.

The basic fact about H(t) in the Z-graded case is that it is the Laurent expansion of a rational
function at the origin:

Theorem 9 (Hilbert, Serre; Ehrhart). Suppose that M is a normal positive affine monoid. Then

H(t) =
R(t)

(1− te)r , R(t) ∈ Z[t],

180

where r is the rank of M and e is the least common multiple of the degrees of the extreme
integral generators of cone(M). As a rational function, H(t) has negative degree.

The statement about the rationality of H(t) holds under much more general hypotheses.

Usually one can find denominators for H(t) of much lower degree than that in the theorem,
and Normaliz tries to give a more economical presentation of H(t) as a quotient of two poly-
nomials. One should note that it is not clear what the most natural presentation of H(t) is in
general (when e > 1). We discuss this problem in [11, Section 4]. The examples 2.5 and 2.6.2,
may serve as an illustration.

A rational cone C and a grading together define the rational polytope Q =C∩A1 where A1 =
{x : degx = 1}. In this sense the Hilbert series is nothing but the Ehrhart series of Q. The
following description of the Hilbert function H(M,k) = #{x ∈M : degx = k} is equivalent to
the previous theorem:

Theorem 10. There exists a quasipolynomial q with rational coefficients, degree rankM− 1
and period π dividing e such that H(M,k) = q(k) for all q≥ 0.

The statement about the quasipolynomial means that there exist polynomials q(j), j = 0, . . . ,π−
1, of degree rankM−1 such that

q(k) = q(j)(k), j ≡ k (π),

and
q(j)(k) = q(j)

0 +q(j)
1 k+ · · ·+q(j)

r−1kr−1, r = rankM,

with coefficients q(j)
i ∈Q. It is not hard to show that in the case of affine monoids all compo-

nents have the same degree r−1 and the same leading coefficient:

qr−1 =
vol(Q)

(r−1)!
,

where vol is the lattice normalized volume of Q (a lattice simplex of smallest possible volume
has volume 1). The multiplicity of M, denoted by e(M) is (r−1)!qr−1 = vol(Q).

Suppose now that P is a rational polyhedron in Rd , L⊂Zd is an affine lattice, and we consider
N = P∩L as a module over M = recL(P). Then we must give up the condition that deg takes
the value 1 on gp(M) (see Section ?? for an example). But the Hilbert series

HN(t) = ∑
x∈N

tdegx

is well-defined, and the qualitative statement above about rationality remain valid. However,
in general the quasipolynomial gives the correct value of the Hilbert function only for k > r
where r is the degree of the Hilbert series as a rational function. The multiplicity of N is given
by

e(N) = mrank(N)e(M).

181

where mrank(M) is the module rank of M.

Since N may have generators in negative degrees, Normaliz shifts the degrees into Z+ by
subtracting a constant, called the shift. (The shift may also be positive.)

Above the multiplicity of M was defined under the assumption that gp(M) contains an element
of degree 1. In the homogeneous situation where no module N comes into play, Normaliz
achieves this extra condition by dividing the grading by the grading denominator so that we
are effectively in the situation considered above, except in two situations: (i) the use of the
grading denominator is blocked; (ii) when a module N is considered, it can easily happen that
the grading restricted to the recession monoid M has a denominator g > 1, but there occur
degrees in N that are not divisible by g. Let deg′ = deg/g and let e′(M) be the multiplicity of
M with respect to deg′. Then

e(M) =
e′(M)

gr−1 .

With this definition, e(M) has the expected property as a dimension normed leading coefficient
of the Hilbert quasipolynomial: if q(j) is a nonzero component of the quasipolynomial of M,
then its leading coefficient satisfies

q(j)
r−1 =

e(M)

(r−1)!
.

This follows immediately from the substitution k 7→ k/g in the Hilbert function when we pass
from deg′ to deg: H(M,k) = H ′(M,k/g) if g divides k and H(M,k) = 0 otherwise. Also the
interpretation as a volume is consistent: e(M) is the lattice normalized volume of the polytope
C∩{x : degx = 1} (whereas e′(M) is the lattice normalized volume of C∩{x : degx = g}).
For the interpretation of the multiplicity e(N) =mrank(N)e(M) one must first split the module
N into a direct sum where each summand bundles the elements whose degrees belong to a fixed
residue class modulo g. Let N0, . . . ,Ng−1 be these summands. Then e(Nk) is the dimension
normed constant leading coefficient of the Hilbert quasipolynomial of Nk for each k, and
e(N) = ∑k e(Nk).

A.8. The class group

A normal affine monoid M has a well-defined divisor class group. It is naturally isomorphic to
the divisor class group of K[M] where K is a field (or any unique factorization domain); see [7,
Section 4.F], and especially [7, Corollary 4.56]. The class group classifies the divisorial ideals
up to isomorphism. It can be computed from the standard embedding that sends an element
x of gp(M) to the vector σ(x) where σ is the collection of support forms σ1, . . . ,σs of M:
Cl(M) = Zs/σ(gp(M)). Finding this quotient amounts to an application of the Smith normal
form to the matrix of σ .

182

B. Annotated console output

Somewhat outdated, but not much has changed in the shown computations since 3.2.0.

B.1. Primal mode

With
./normaliz -ch example/A443

we get the following terminal output.

\.....|

Normaliz 3.2.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

January 2017 \.|

\|

**
Command line: -ch example/A443

Compute: HilbertBasis HilbertSeries

**
starting primal algorithm with full triangulation ...

Roughness 1

Generators sorted by degree and lexicographically

Generators per degree:

1: 48

Self explanatory so far (see Section 6.3 for the definition of roughness). Now the generators
are inserted.

Start simplex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 22 25 26 27 28 31 34

37 38 39 40 43 46

Normaliz starts by searching linearly independent generators with indices as small as possi-
ble. They span the start simplex in the triangulation. The remaining generators are inserted
successively. (If a generator does not increase the cone spanned by the previous ones, it is not
listed, but this does not happen for A443.)

gen=17, 39 hyp, 4 simpl

We have now reached a cone with 39 support hyperplanes and the triangulation has 4 simplices
so far. We omit some generators until something interesting happens:

gen=35, 667 hyp, 85 pyr, 13977 simpl

In view of the number of simplices in the triangulation and the number of support hyperplanes,
Normaliz has decided to build pyramids and to store them for later triangulation.

183

gen=36, 723 hyp, 234 pyr, 14025 simpl

...

gen=48, 4948 hyp, 3541 pyr, 14856 simpl

All generators have been processed now. Fortunately our cone is pointed:

Pointed since graded

Select extreme rays via comparison ... done.

Normaliz knows two methods for finding the extreme rays. Instead of “comparison” you
may see “rank”. Now the stored pyramids must be triangulated. They may produce not only
simplices, but also pyramids of higher level, and indeed they do so:

**
level 0 pyramids remaining: 3541

**

**
all pyramids on level 0 done!

**
level 1 pyramids remaining: 5935

**

**
all pyramids on level 1 done!

**
level 2 pyramids remaining: 1567

**
1180 pyramids remaining on level 2, evaluating 2503294 simplices

At this point the preset size of the evaluation buffer for simplices has been exceeded. Normaliz
stops the processing of pyramids, and empties the buffer by evaluating the simplices.

||

2503294 simplices, 0 HB candidates accumulated.

**
all pyramids on level 2 done!

**
level 3 pyramids remaining: 100

**

**
all pyramids on level 3 done!

This is a small computation, and the computation of pyramids goes level by level without the
necessity to return to a lower level. But in larger examples the buffer for level n+ 1 may
be filled before level n is finished. Then it becomes necessary to go back. Some simplices
remaining in the buffer are now evaluated:

evaluating 150978 simplices

||

184

2654272 simplices, 0 HB candidates accumulated.

Adding 1 denominator classes... done.

Since our generators form the Hilbert basis, we do not collect any further candidates. If all
generators are in degree 1, we have only one denominator class in the Hilbert series, but
otherwise there may be many. The collection of the Hilbert series in denominator classes
reduces the computations of common denominators to a minimum.

Total number of pyramids = 14137, among them simplicial 2994

Some statistics of the pyramid decomposition.

--

transforming data... done.

Our computation is finished.

A typical pair of lines that you will see for other examples is

auto-reduce 539511 candidates, degrees <= 1 3 7

reducing 30 candidates by 73521 reducers

It tells you that Normaliz has found a list of 539511 new candidates for the Hilbert basis, and
this list is reduced against itself (auto-reduce). Then the 30 old candidates are reduced against
the 73521 survivors of the auto-reduction.

B.2. Dual mode

Now we give an example of a computation in dual mode. It is started by the command

./normaliz -cid example/5x5

The option i is used to suppress the HSOP in the input file. The console output:

\.....|

Normaliz 3.2.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

January 2017 \.|

\|

**
Command line: -cid example/5x5

Compute: DualMode

No inequalities specified in constraint mode, using non-negative orthant.

**

Indeed, we have used only equations as the input.

**
computing Hilbert basis ...

185

==

cut with halfspace 1 ...

Final sizes: Pos 1 Neg 1 Neutral 0

The cone is cut out from the space of solutions of the system of equations (in this case) by
successive intersections with halfspaces defined by the inequalities. After such an intersection
we have the positive half space, the “neutral” hyperplane and the negative half space. The final
sizes given are the numbers of Hilbert basis elements strictly in the positive half space, strictly
in the negative half space, and in the hyperplane. This pattern is repeated until all hyperplanes
have been used.

==

cut with halfspace 2 ...

Final sizes: Pos 1 Neg 1 Neutral 1

We leave out some hyperplanes . . .

==

cut with halfspace 20 ...

auto-reduce 1159 candidates, degrees <= 13 27

Final sizes: Pos 138 Neg 239 Neutral 1592

==

cut with halfspace 21 ...

Positive: 1027 Negative: 367

..

Final sizes: Pos 1094 Neg 369 Neutral 1019

Sometimes reduction takes some time, and then Normaliz may issue a message on “auto-
reduction” organized by degree (chosen for the algorithm, not defined by the given grading).
The line of dots is printed is the computation of new Hilbert basis candidates takes time, and
Normaliz wants to show you that it is not sleeping. Normaliz shows you the number of positive
and negative partners that must be pared produce offspring.

==

cut with halfspace 25 ...

Positive: 1856 Negative: 653

..

auto-reduce 1899 candidates, degrees <= 19 39

Final sizes: Pos 1976 Neg 688 Neutral 2852

All hyperplanes have been taken care of.

Find extreme rays

Find relevant support hyperplanes

Well, in connection with the equations, some hyperplanes become superfluous. In the output
file Normaliz will list a minimal set of support hyperplanes that together with the equations
define the cone.

186

Hilbert basis 4828

The number of Hilbert basis elements computed is the sum of the last positive and neutral
numbers.

Find degree 1 elements

The input file contains a grading.

transforming data... done.

Our example is finished.

The computation of the new Hilbert basis after the intersection with the new hyperplane pro-
ceeds in rounds, and there can be many rounds . . . (not in the above example). Then you can
see terminal output like

Round 100

Round 200

Round 300

Round 400

Round 500

C. Normaliz 2 input syntax

A Normaliz 2 input file contains a sequence of matrices. Comments or options are not allowed
in it. A matrix has the format

<m>

<n>

<x_1>

...

<x_m>

<type>

where <m> denotes the number of rows, <n> is the number of columns and <x_1>\dots<x_n>

are the rows with <n> entries each. All matrix types of Normaliz 3 are allowed (with Nor-
maliz 3), also grading and dehomogenization. These vectors must be encoded as matrices
with 1 row.

Note that algebraic polyhedra cannot be defined by input files in this format.

The optional output files with suffix cst are still in this format. Just create one and inspect it.

187

D. libnormaliz

The kernel of Normaliz is the C++ class library libnormaliz. It implements all the classes that are
necessary for the computations. The central class is Cone. It realizes the communication with the
calling program and starts the computations most of which are implemented in other classes. In the
following we describe the class Cone; other classes of libnormaliz may follow in the future.

Of course, Normaliz itself is the prime example for the use of libnormaliz, but it is rather complicated
because of the input and output it must handle. Therefore we have a added a simple example program
at the end of this introduction.

libnormaliz defines its own name space. In the following we assume that

using namespace std;

using namespace libnormaliz;

have been declared. It is clear that opening these name spaces is dangerous. In this documentation we
only do it to avoid constant repetition of std:: and libnormaliz::

D.1. The master header file

#include "libnormaliz/libnormaliz.h"

reads all installed header files of libnormaliz.

D.2. Optional packages and configuration

The file

#include "libnormaliz/lnmz_config.h"

is created and installed when Normaliz is built by the autotools scripts. It (un)defines the preprocessor
variables that indicate the optional packages used in the build process. These are

ENFNORMALIZ NMZ_NAUTY NMZ_FLINT NMZ_COCOA

with obvious interpretations (ENFNORMALIZ stands for e-antic).

D.3. Integer type as a template parameter

A cone can be constructed for two integer types, long long and mpz_class. (Also long is possible, but
we disregard it in the following, since one should make sure that the integer type has at least 64 bits.) It
is reasonable to choose mpz_class since the main computations will then be tried with long long and
restarted with mpz_class if long long cannot store the results. This internal change of integer type is
not possible if the cone is constructed for long long. (Nevertheless, the linear algebra routines can use
mpz_class locally if intermediate results exceed long long; have a look into matrix.cpp.)

Internally the template parameter is called Integer. In the following we assume that the integer type
has been fixed as follows:

188

typedef mpz_class Integer;

The internal passage from mpz_class to long long can be suppressed by

MyCone.deactivateChangeOfPrecision();

where we assume that MyCone has been constructed as described in the next section.

D.3.1. Alternative integer types

It is possible to use libnormaliz with other integer types than mpz_class, long long, long or renf_elem_class
but we have tested only these types.

If you want to use other types, you probably have to implement some conversion functions which you
can find in integer.h and integer.cpp. Namely the functions

bool libnormaliz::try_convert(TypeA, TypeB);

// converts TypeB to TypeA, returns false if not possible

where one type is your type and the other is long, long long, mpz_class and nmz_float. Additionally,
if your type uses infinite precision (for example, it is some wrapper for GMP), you must also implement

template<> inline bool libnormaliz::using_GMP<YourType>() { return true; }

D.3.2. Decimal fractions and floating point numbers

libnormaliz has a type nmz_float (presently set to double) that allows the construction of cones from
floating point data. These are are first converted into mpq_class by using the GMP constructor of
mpq_class, and then denominators are cleared. (The input routine of Normaliz goes another way by
reading the floating point input as decimal fractions.)

D.4. Construction of a cone

The construction requires the specification of input data consisting of one or more matrices and the
input types they represent. In addition there is a constructor that takes a Normaliz input file.

The term “matrix” stands for

vector<vector<number> >

where predefined choices of number are long long, mpz_class, mpq_class and nmz_float (the latter
representing double).

The available input types (from input_type.h) are defined as follows:

namespace Type {

enum InputType {

//

// homogeneous generators

189

//

polytope,

rees_algebra,

subspace,

cone,

cone_and_lattice,

lattice,

rational_lattice,

saturation,

//

// inhomogeneous generators

//

vertices,

offset,

rational_offset,

//

// homogeneous constraints

//

inequalities,

signs,

equations,

congruences,

excluded_faces,

//

// inhomogeneous constraints

//

inhom_equations,

inhom_inequalities,

strict_inequalities,

strict_signs,

inhom_congruences,

inhom_excluded_faces,

//

// linearforms

//

grading,

dehomogenization,

//

// special

open_facets,

projection_coordinates,

lattice_ideal,

//

// precomputed data

//

support_hyperplanes,

190

extreme_rays,

maximal_subspace,

generated_lattice,

hilbert_basis_rec_cone,

//

// deprecated

//

integral_closure,

normalization,

polyhedron,

...

};

} //end namespace Type

The input types are explained in Section 3. (There are further input types used for debugging and tests.)

In certain environments it is not possible to use the enumeration. Therefore we provide a function that
converts a string into the corresponding input type:

Type::InputType to_type(const string& type_string)

The types grading, dehomogenization, signs, strict_signs, offsetand open_facets must be en-
coded as matrices with a single row. We come back to this point below.

The simplest constructor has the syntax

Cone<Integer>::Cone(InputType input_type, const vector< vector<Integer> >& Input)

and can be used as in the following example:

vector<vector <Integer> > Data = ...

Type::InputType type = cone;

Cone<Integer> MyCone = Cone<Integer>(type, Data);

For two and three pairs of type and matrix there are the constructors

Cone<Integer>::Cone(InputType type1, const vector< vector<Integer> >& Input1,

InputType type2, const vector< vector<Integer> >& Input2)

Cone<Integer>::Cone(InputType type1, const vector< vector<Integer> >& Input1,

InputType type2, const vector< vector<Integer> >& Input2,

InputType type3, const vector< vector<Integer> >& Input3)

If you have to combine more than three matrices, you can define a

map <InputType, vector< vector<Integer> > >

and use the constructor with syntax

Cone<Integer>::Cone(const map< InputType,

vector< vector<Integer> > >& multi_input_data)

191

The four constructors also exist in a variant that uses the libnormaliz type Matrix<Integer> instead
of vector< vector<Integer> > (see cone.h).

For the input of rational numbers we have all constructors also in variants that use mpq_class for the
input matrix, for example

Cone<Integer>::Cone(InputType input_type, const vector< vector<mpq_class> >& Input)

etc.

Similarly, for the input of decimal fractions and floating point numbers we have all constructors also in
variants that use nmz_float for the input matrix, for example

Cone<Integer>::Cone(InputType input_type, const vector< vector<nmz_float> >& Input)

etc.

Note that rational_lattice and rational_offset can only be used if the input data are given in class
mpq_class or nmz_float.

For convenience we provide the function

vector<vector<T> > to_matrix<Integer>(vector<T> v)

in matrix.h. It returns a matrix whose first row is v. A typical example:

size_t dim = ...

vector<vector <Integer> > Data = ...

Type::InputType type = cone;

vector<Integer> total_degree(dim,1);

Type::InputType grad = grading;

Cone<Integer> MyCone = Cone<Integer>(type, Data,grad,to_matrix(total_degree));

There is a default constructor for cones,

Cone<Integer>::Cone()

D.4.1. Construction from an input file

One can construct a cone also from a Normaliz input file by

Cone<Integer>::Cone(const string project)

The constructor reads the file <project>.in. All options in the file and numerical parameters are
disregarded. The polynomial if present is however forwarded to the cone.

D.5. Setting and changing additional data

These data must be given to the cone before starting the computation if they are needed. The numerical
parameters have default values, and the grading can be set when the cone is constructed.

192

D.5.1. Polynomial

The polynomial needed for integrals and weighted Ehrhart series must be passed to the cone after
construction:

void Cone<Integer>::setPolynomial(string poly)

Like the grading it can be changed later on. Then the results depending on the previous polynomial
will be deleted.

D.5.2. Grading

If your computation needs a grading, you should include it into the construction of the cone. However,
especially in interactive use via PyNormaliz or other interfaces, it can be useful to add the grading if it
was forgotten or to change it later on. The following function allows this:

void Cone<Integer>::resetGrading(const vector<Integer>& grading)

Note that it deletes all previously computed results that depend on the grading.

D.5.3. Projection coordinates

Similarly to resetGrading we have

void Cone<Integer>::resetProjectionCoords(const vector<Integer>& lf)

The entries of lf must be 0 or 1.

D.5.4. Numerical parameters

Some computations can be controlled by numerical parameters. They can be given to the cone en bloc
or individually.

To set them individually, you can use the following functions:

void Cone<Integer>::setExpansionDegree(long degree)

void Cone<Integer>::setNrCoeffQuasiPol(long nr_coeff)

void Cone<Integer>::setFaceCodimBound(long bound)

void Cone<Integer>::setAutomCodimBoundVectors(long bound) // not yet used

void Cone<Integer>::setDecimalDigits(long digits)

void Cone<Integer>::setBlocksizeHollowTri(long block_size)

There common default value of degree is −1, signaling no expansion, all coefficients or no codimen-
sion bound etc. One can reset the values after a computation. Then they will delete the computation
results that depend on them.

To set them en bloc you can use

void Cone<Integer>::setNumericalParams(const map <NumParam::Param, long >& num_params)

where NumParam::Param refers to

193

namespace NumParam {

enum Param {

expansion_degree,

nr_coeff_quasipol,

face_codim_bound,

autom_codim_bound_vectors, // not yet used

block_size_hollow_tri,

decimal_digits,

not_a_num_param

};

} //end namespace NumParam

(see libnormaliz/input_type.h).

D.6. Modifying a cone after construction

Within some boundaries it is possible to change an already constructed cone (and lattice). To this end
one can use the functions

void Cone<Integer>::modifyCone(const map<InputType, vector<vector<Integer> > >&

multi_add_input_const)

void Cone<Integer>::modifyCone(InputType input_type, const vector< vector<Integer> >& Input)

Similar to the cone constructor, it has variations for vector< vector<mpq_class> > and
vector< vector<nmz_float> > for cones that are not of renf_elem_class. There are also versions
with Matrix<...> .

The following input types are allowed (to be prefixed by Type::)

cone vertices subspace

equations inhom_equations inequalities inhom_inequalities

Modifying the current cone C by additional generators (first row) means to extend C. Modifying it by
additional constraints (second row) restricts C.

It is allowed to issue several modifyCone(...) at any time, but there are some restrictions:

(1) The inhomogeneous types are only allowed if the cone was constructed with inhomogeneous
input.

(2) Normaliz cannot fall back behind the coordinate transformation that has been reached at the time
of additional input. This implies: (i) Additional generators must satisfy the equations valid at the
time of addition. (They are automatically adapted to the congruences if there should be any.) (ii)
Additional linear inequalities must vanish on the maximal subspace at the time of addition.

(3) modifyCone cannot be used if the cone was created with rational_lattice or rational_offset.
(4) Between two compute(...) several modifyCone are allowed. But they must be of the same

category, either the types in the first line above (generators) or those in the second (constraints).

The last restriction are necessary to avoid ambiguities. If the cone constructor is used with generators
and constraints simultaneously, then the intersection of the cones defined by the constraints on one side

194

and the generators on the other side is computed. (The same applies to lattice data.) In contrast, the
later addition of generators always leads to an extension of the existing cone. And: if both constraints
and generators are added between two compute, should we first extend and then restrict, or the other
way round? The two operations do not commute.

For flexibility both support hyperplanes and extrene rays are computed before the modification.

It may happen that a previously computed (or provided) grading gives a negative value on an added
generator. In this case the grading is reset. In the inhomogeneous case, if the dehomogenization should
give a negative value, a BadInputException is thrown.

D.7. Computations in a cone

Before starting a computation in a (previously constructed) cone, one must decide what should be
computed and in which way it should be computed. The computation goals and algorithmic variants
(see Section 4) are defined as follows (cone_property.h):

namespace ConeProperty {

enum Enum {

// matrix valued

START_ENUM_RANGE(FIRST_MATRIX),

ExtremeRays,

VerticesOfPolyhedron,

SupportHyperplanes,

HilbertBasis,

ModuleGenerators,

Deg1Elements,

LatticePoints,

ModuleGeneratorsOverOriginalMonoid,

ExcludedFaces,

OriginalMonoidGenerators,

MaximalSubspace,

Equations,

Congruences,

END_ENUM_RANGE(LAST_MATRIX),

START_ENUM_RANGE(FIRST_MATRIX_FLOAT),

SuppHypsFloat,

VerticesFloat,

ExtremeRaysFloat,

END_ENUM_RANGE(LAST_MATRIX_FLOAT),

// vector valued

START_ENUM_RANGE(FIRST_VECTOR),

Grading,

Dehomogenization,

WitnessNotIntegrallyClosed,

GeneratorOfInterior,

195

CoveringFace,

AxesScaling,

END_ENUM_RANGE(LAST_VECTOR),

// integer valued

START_ENUM_RANGE(FIRST_INTEGER),

TriangulationDetSum,

ReesPrimaryMultiplicity,

GradingDenom,

UnitGroupIndex,

InternalIndex,

END_ENUM_RANGE(LAST_INTEGER),

START_ENUM_RANGE(FIRST_GMP_INTEGER),

ExternalIndex = FIRST_GMP_INTEGER,

END_ENUM_RANGE(LAST_GMP_INTEGER),

// rational valued

START_ENUM_RANGE(FIRST_RATIONAL),

Multiplicity,

Volume,

Integral,

VirtualMultiplicity,

END_ENUM_RANGE(LAST_RATIONAL),

// field valued

START_ENUM_RANGE(FIRST_FIELD_ELEM),

RenfVolume,

END_ENUM_RANGE(LAST_FIELD_ELEM),

// floating point valued

START_ENUM_RANGE(FIRST_FLOAT),

EuclideanVolume,

EuclideanIntegral,

END_ENUM_RANGE(LAST_FLOAT),

// dimensions and cardinalities

START_ENUM_RANGE(FIRST_MACHINE_INTEGER),

TriangulationSize,

NumberLatticePoints,

RecessionRank,

AffineDim,

ModuleRank,

Rank,

EmbeddingDim,

END_ENUM_RANGE(LAST_MACHINE_INTEGER),

196

// boolean valued

START_ENUM_RANGE(FIRST_BOOLEAN),

IsPointed,

IsDeg1ExtremeRays,

IsDeg1HilbertBasis,

IsIntegrallyClosed,

IsReesPrimary,

IsInhomogeneous,

IsGorenstein,

IsEmptySemiOpen,

//

// checking properties of already computed data

// (cannot be used as a computation goal)

//

IsTriangulationNested,

IsTriangulationPartial,

END_ENUM_RANGE(LAST_BOOLEAN),

// complex structures

START_ENUM_RANGE(FIRST_COMPLEX_STRUCTURE),

Triangulation,

UnimodularTriangulation,

LatticePointTriangulation,

AllGeneratorsTriangulation,

PlacingTriangulation,

PullingTriangulation,

StanleyDec,

InclusionExclusionData,

IntegerHull,

ProjectCone,

ConeDecomposition,

//

Automorphisms,

AmbientAutomorphisms,

CombinatorialAutomorphisms,

RationalAutomorphisms,

EuclideanAutomorphisms,

InputAutomorphisms,

//

HilbertSeries,

HilbertQuasiPolynomial,

EhrhartSeries,

EhrhartQuasiPolynomial,

WeightedEhrhartSeries,

WeightedEhrhartQuasiPolynomial,

197

//

FaceLattice,

FVector,

Incidence,

DualFVector,

DualIncidence,

DualSublattice,

//

Sublattice,

//

ClassGroup,

END_ENUM_RANGE(LAST_COMPLEX_STRUCTURE),

//

// integer type for computations

//

START_ENUM_RANGE(FIRST_PROPERTY),

BigInt,

//

// algorithmic variants

//

DefaultMode,

Approximate,

BottomDecomposition,

NoBottomDec,

DualMode,

PrimalMode,

Projection,

ProjectionFloat,

NoProjection,

Symmetrize,

NoSymmetrization,

NoSubdivision,

NoNestedTri, // synonym for NoSubdivision

KeepOrder,

HSOP,

NoPeriodBound,

NoLLL,

NoRelax,

Descent,

NoDescent,

NoGradingDenom,

GradingIsPositive,

ExploitAutomsVectors, // not yet implemented

ExploitIsosMult,

StrictIsoTypeCheck,

198

SignedDec,

NoSignedDec,

FixedPrecision,

//

Dynamic,

Static,

//

// ONLY FOR INTERNAL CONTROL

//

...

END_ENUM_RANGE(LAST_PROPERTY),

EnumSize // this has to be the last entry, to get the number of entries in the enum

}; // remember to change also the string conversion function if you change this enum

}

The class ConeProperties is based on this enumeration. Its instantiations are essentially boolean
vectors that can be accessed via the names in the enumeration. Instantiations of the class are used to
set computation goals and algorithmic variants and to check whether the goals have been reached. The
distinction between computation goals and algorithmic variants is not completely strict. See Section 4
for implications between some ConeProperties.

There exist versions of compute for up to 3 cone properties:

ConeProperties Cone<Integer>::compute(ConeProperty::Enum cp)

ConeProperties Cone<Integer>::compute(ConeProperty::Enum cp1,

ConeProperty::Enum cp2)

ConeProperties Cone<Integer>::compute(ConeProperty::Enum cp1,

ConeProperty::Enum cp2, ConeProperty::Enum cp3)

An example:

MyCone.compute(ConeProperty::HilbertBasis, ConeProperty::Multiplicity)

If you want to specify more than 3 cone properties, you can define an instance of ConeProperties

yourself and call

ConeProperties Cone<Integer>::compute(ConeProperties ToCompute)

An example:

ConeProperties Wanted;

Wanted.set(ConeProperty::Triangulation, ConeProperty::HilbertBasis);

MyCone.compute(Wanted);

All get... functions that are listed in the next section, try to compute the data asked for if they have
not yet been computed. Unless you are interested a single result, we recommend to use compute since

199

the data asked for can then be computed in a single run. For example, if the Hilbert basis and the
multiplicity are wanted, then it would be a bad idea to call getHilbertBasis and getMultiplicity

consecutively. More importantly, however, there is no choice of an algorithmic variant if you use
get... without compute beforehand.

It is possible that a computation goal is unreachable. If this can be recognized from the input, a
BadInputException will be thrown. If it cannot be recognized from the input, and DefaultMode is not
set, then compute() will throw a NotComputableException so that compute() cannot return a value.
In the presence of DefaultMode, the returned ConeProperties are those that have not been computed.

Please inspect cone_property.cpp for the full list of methods implemented in the class ConeProperties.
Here we only mention the constructors

ConeProperties::ConeProperties(ConeProperty::Enum p1)

ConeProperties::ConeProperties(ConeProperty::Enum p1, ConeProperty::Enum p2)

ConeProperties::ConeProperties(ConeProperty::Enum p1, ConeProperty::Enum p2,

ConeProperty::Enum p3)

and the functions

ConeProperties& ConeProperties::set(ConeProperty::Enum p1, bool value)

ConeProperties& ConeProperties::set(ConeProperty::Enum p1, ConeProperty::Enum p2)

bool ConeProperties::test(ConeProperty::Enum Property) const

A string can be converted to a cone property and conversely:

ConeProperty::Enum toConeProperty(const string&)

const string& toString(ConeProperty::Enum)

You can return the whole collection of reached computation goals via

const ConeProperties& Cone<Integer>::getIsComputed() const

D.8. Retrieving results

As remarked above, all get... functions that are listed below, try to compute the data asked for if they
have not yet been computed. As also remarked above, it is often better to use compute first.

The functions that return a matrix encoded as vector<vector<number> > have variants that return a
matrix encoded in the libnormaliz class Matrix<number>. These are not listed below; see cone.h.

Note that there are now functions that return results by type so that interfaces need not implement all
the functions in this section. See D.8.25.

D.8.1. Checking computations

In order to check whether a computation goal has been reached, one can use

200

bool Cone<Integer>::isComputed(ConeProperty::Enum prop) const

for example

bool done=MyCone.isComputed(ConeProperty::HilbertBasis)

D.8.2. Rank, index and dimension

size_t Cone<Integer>::getEmbeddingDim()

size_t Cone<Integer>::getRank()

Integer Cone<Integer>::getInternalIndex()

Integer Cone<Integer>::getUnitGroupIndex()

size_t Cone<Integer>::getRecessionRank()

long Cone<Integer>::getAffineDim()

size_t Cone<Integer>::getModuleRank()

The internal index is only defined if original generators are defined. See Section D.8.16 for the external
index.

The last three functions return values that are only well-defined after inhomogeneous computations.

D.8.3. Support hyperplanes and constraints

const vector< vector<Integer> >& Cone<Integer>::getSupportHyperplanes()

size_t Cone<Integer>::getNrSupportHyperplanes()

The first function returns the support hyperplanes of the (homogenized) cone. The second function
returns the number of support hyperplanes. Similarly we have

const vector< vector<Integer> >& Cone<Integer>::getEquations()

size_t Cone<Integer>::getNrEquations()

const vector< vector<Integer> >& Cone<Integer>::getCongruences()

size_t Cone<Integer>::getNrCongruences()

Support hyperplanes can be returned in floating point format:

const vector< vector<nmz_float> >& Cone<Integer>::getSuppHypsFloat()

size_t Cone<Integer>::getNrSuppHypsFloat()

For these functions there also exist Matrixversions.

D.8.4. Extreme rays and vertices

const vector< vector<Integer> >& Cone<Integer>::getExtremeRays()

size_t Cone<Integer>::getNrExtremeRays()

201

const vector< vector<Integer> >& Cone<Integer>::getVerticesOfPolyhedron()

size_t Cone<Integer>::getNrVerticesOfPolyhedron()

In the inhomogeneous case the first function returns the extreme rays of the recession cone, and the
second the vertices of the polyhedron. (Together they form the extreme rays of the homogenized cone.)

Vertices and extreme rays can be returned in floating point format:

const vector< vector<nmz_float> >& Cone<Integer>::getVerticesFloat()

const vector< vector<nmz_float> >& Cone<Integer>::getExtremeRaysFloat()

size_t Cone<Integer>::getNrVerticesFloat()

D.8.5. Generators

const vector< vector<Integer> >& Cone<Integer>::getOriginalMonoidGenerators()

size_t Cone<Integer>::getNrOriginalMonoidGenerators()

Note that original generators are not always defined. The system of generators of the cone that is used
in the computations and its cardinality are returned by

const vector< vector<Integer> >& Cone<Integer>::getGenerators()

size_t Cone<Integer>::getNrGenerators()

D.8.6. Lattice points in polytopes and elements of degree 1

const vector< vector<Integer> >& Cone<Integer>::getDeg1Elements()

size_t Cone<Integer>::getNrDeg1Elements()

These functions apply to the homogeneous case. getNrDeg1Elements() returns the number of degree
1 elements if these have been computed and stored|, and if the degree 1 elements are not available, it
forces their computation and storage, even if the number of these elements should be known from other
computations.

In the inhomogeneous case replace Deg1Elements by ModuleGenerators; see below. (They are also
computable in the unbounded case.) A uniform access is possible by

const vector< vector<Integer> >& Cone<Integer>::getLatticePoints()

size_t Cone<Integer>::getNrLatticePoints()

In addition, we have

size_t Cone<Integer>::getNumberLatticePoints()

There is an important difference between getNrLatticePoints() and getNumberLatticePoints():
the latter returns the number whenever it is known for some reason. If the number is not known, it
forces only the counting of lattice points, not their storage.

202

D.8.7. Hilbert basis

In the nonpointed case we need the maximal linear subspace of the cone:

const vector< vector<Integer> >& Cone<Integer>::getMaximalSubspace()

size_t Cone<Integer>::getDimMaximalSubspace()

One of the prime results of Normaliz and its cardinality are returned by

const vector< vector<Integer> >& Cone<Integer>::getHilbertBasis()

size_t Cone<Integer>::getNrHilbertBasis()

Inhomogeneous case the functions refer to the the Hilbert basis of the recession cone. The module
generators of the lattice points in the polyhedron are accessed by

const vector< vector<Integer> >& Cone<Integer>::getModuleGenerators()

size_t Cone<Integer>::getNrModuleGenerators()

If the original monoid is not integrally closed, you can ask for a witness:

vector<Integer> Cone<Integer>::getWitnessNotIntegrallyClosed()

D.8.8. Module generators over original monoid

const vector< vector<Integer> >&

Cone<Integer>::getModuleGeneratorsOverOriginalMonoid()

size_t Cone<Integer>::getNrModuleGeneratorsOverOriginalMonoid()

D.8.9. Generator of the interior

If the monoid is Gorenstein, Normaliz computes the generator of the interior (the canonical module):

const vector<Integer>& Cone<Integer>::getGeneratorOfInterior()

Before asking for this vector, one should test isGorenstein().

D.8.10. Grading and dehomogenization

vector<Integer> Cone<Integer>::getGrading()

Integer Cone<Integer>::getGradingDenom()

The second function returns the denominator of the grading.

vector<Integer> Cone<Integer>::getDehomogenization()

203

D.8.11. Enumerative data

mpq_class Cone<Integer>::getMultiplicity()

Don’t forget that the multiplicity is measured for a rational, not necessarily integral polytope. Therefore
it need not be an integer. The same applies to

mpq_class Cone<Integer>::getVolume()

nmz_float Cone<Integer>::getEuclideanVolume()

which can be computed for polytopes defined by homogeneous or inhomogeneous input. In the homo-
geneous case the volume is the multiplicity.

The Hilbert and Ehrhart series are stored in instances class HilbertSeries. They are retrieved by

const HilbertSeries& Cone<Integer>::getHilbertSeries()

const HilbertSeries& Cone<Integer>::getEhrhartSeries()

They contain several data fields that can be accessed as follows (see hilbert_series.h):

const vector<mpz_class>& HilbertSeries::getNum() const;

const map<long, denom_t>& HilbertSeries::getDenom() const;

const vector<mpz_class>& HilbertSeries::getCyclotomicNum() const;

const map<long, denom_t>& HilbertSeries::getCyclotomicDenom() const;

const vector<mpz_class>& HilbertSeries::getHSOPNum() const;

const map<long, denom_t>& HilbertSeries::getHSOPDenom() const;

long HilbertSeries::getDegreeAsRationalFunction() const;

long HilbertSeries::getShift() const;

bool HilbertSeries::isHilbertQuasiPolynomialComputed() const;

const vector< vector<mpz_class> >& HilbertSeries::getHilbertQuasiPolynomial() const;

long HilbertSeries::getPeriod() const;

mpz_class HilbertSeries::getHilbertQuasiPolynomialDenom() const;

vector<mpz_class> HilbertSeries::getExpansion() const;

The first six functions refer to three representations of the Hilbert series as a rational function in the
variable t: the first has a denominator that is a product of polynomials (1− tg)e, the second has a de-
nominator that is a product of cyclotomic polynomials. In the third case the denominator is determined
by the degrees of a homogeneous system of parameters (see Section 2.5). In all cases the numerators
are given by their coefficient vectors, and the denominators are lists of pairs (g,e) where in the second
case g is the order of the cyclotomic polynomial.

If you have already computed the Hilbert series without HSOP and you want it with HSOP afterwards,
the Hilbert series will simply be transformed, but Normaliz must compute the degrees for the denomi-
nator, and this may be a nontrivial computation.

The degree as a rational function is of course independent of the chosen representation, but may be

204

negative, as well as the shift that indicates with which power of t the numerator tarts. Since the denom-
inator has a nonzero constant term in all cases, this is exactly the smallest degree in which the Hilbert
function has a nonzero value.

The Hilbert quasipolynomial is represented by a vector whose length is the period and whose entries are
itself vectors that represent the coefficients of the individual polynomials corresponding to the residue
classes modulo the period. These integers must be divided by the common denominator that is returned
by the last function.

For the input type rees_algebra we provide

Integer Cone<Integer>::getReesPrimaryMultiplicity()

D.8.12. Weighted Ehrhart series and integrals

The weighted Ehrhart series can be accessed by

const pair<HilbertSeries, mpz_class>& Cone<Integer>::getWeightedEhrhartSeries()

The second component of the pair is the denominator of the coefficients in the series numerator. Its
introduction was necessary since we wanted to keep integral coefficients for the numerator of a Hilbert
series. The numerator and the denominator of the first component of type HilbertSeries can be
accessed as usual, but one must not forget the denominator of the numerator coefficients, the second
component of the return value. There is a second way to access these data; see below.

The virtual multiplicity and the integral, respectively, are got by

mpq_class Cone<Integer>::getVirtualMultiplicity()

mpq_class Cone<Integer>::getIntegral()

nmz_float Cone<Integer>::getEuclideanIntegral()

Actually the cone saves these data in a special container of class IntegrationData (defined in Hilbert_series.h).
It is accessed by

const IntegrationData& Cone<Integer>::getIntData()

The three get functions above are only shortcuts for the access via getIntData():

string IntegrationData::getPolynomial() const

long IntegrationData::getDegreeOfPolynomial() const

bool IntegrationData::isPolynomialHomogeneous() const

const vector<mpz_class>& IntegrationData::getNum_ZZ() const

mpz_class IntegrationData::getNumeratorCommonDenom() const

const map<long, denom_t>& IntegrationData::getDenom() const

const vector<mpz_class>& IntegrationData::getCyclotomicNum_ZZ() const

const map<long, denom_t>& IntegrationData::getCyclotomicDenom() const

bool IntegrationData::isWeightedEhrhartQuasiPolynomialComputed() const

void IntegrationData::computeWeightedEhrhartQuasiPolynomial()

205

const vector< vector<mpz_class> >& IntegrationData::getWeightedEhrhartQuasiPolynomial()

mpz_class IntegrationData::getWeightedEhrhartQuasiPolynomialDenom() const

vector<mpz_class> IntegrationData::getExpansion() const

mpq_class IntegrationData::getVirtualMultiplicity() const

mpq_class IntegrationData::getIntegral() const

The first three functions refer to the polynomial defining the integral or weighted Ehrhart series. The
function getNumeratorCommonDenom() returns the integer by which the coefficients of the numerator
of the series must be divided.

The computation of these data is controlled by the corresponding ConeProperty. The expansion is
always computed on-the-fly. Its values must be divided by the same number as the coefficients of the
numerator.

D.8.13. Triangulation and disjoint decomposition

The last triangulation that has been explicitly computed is returned by

const pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> >&

Cone<Integer>::getTriangulation()

If no triangulation has been computed yet, the basic triangulation is returned.

The Matrix<Integer> contains (a superset of) the vectors that generate the simplicial cones in the
triangulation. The simplicial cones are represented by the <vector<SHORTSIMPLEX<Integer> >:

struct SHORTSIMPLEX {

vector<key_t> key; // full key of simplex

Integer height; // height of last vertex over opposite facet, used in Full_Cone

Integer vol; // volume if computed, 0 else

Integer mult; // used for renf_elem_class in Full_Cone

vector<bool> Excluded; // for disjoint decomposition of cone

// true in position i indicates that the facet

// opposite of generator i must be excluded

};

The key specifies the generators of the simplicial cone by their row indices in the matrix (counted
from 0). The component vol is the (absolute value) of their determinant, and Excluded is only set if
ConeDecomposition was asked for.

For the refined triangulations one uses

const pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> >&

Cone<Integer>::getTriangulation(ConeProperty::Enum quality)

In which the parameter specifies the type of triangulation that is to be computed:

ConeProperty::Triangulation

ConeProperty::AllGeneratorsTriangulation

206

ConeProperty::LatticePointTriangulation

ConeProperty::UnimodularTriangulation

where the first choice returns the basic triangulation.

const pair<vector<SHORTSIMPLEX<Integer> >, Matrix<Integer> >&

Cone<Integer>::getConeDecomposition()

has the same effect as getTriangulation(ConeProperty::Triangulation), except that the compo-
nents Excluded are definitely set.

Additional information on the possibly nested and /or partial triangulation that has been used for the
computation in primal ode can be retrieved by

size_t Cone<Integer>::getTriangulationSize()

Integer Cone<Integer>::getTriangulationDetSum()

D.8.14. Stanley decomposition

The Stanley decomposition is stored in a list whose entries correspond to the simplicial cones in the
triangulation:

const pair<list<STANLEYDATA<Integer> >, Matrix<Integer> > & Cone<Integer>::getStanleyDec()

The Matrix<Integer has the same meaning as for triangulations. STANLEYDATA defined as follows:

struct STANLEYDATA {

vector<key_t> key;

Matrix<Integer> offsets;

};

The key has the same interpretation as for the triangulation, namely as the vector of indices of the
generators of the simplicial cone (counted from 0). The matrix contains the coordinate vectors of the
offsets of the components of the decomposition that belong to the simplicial cone defined by the key.
See Section 6.16 for the interpretation. The format of the matrix can be accessed by the following
functions of class Matrix<Integer>:

size_t nr_of_rows() const

size_t nr_of_columns() const

The entries are accessed in the same way as those of vector<vector<Integer> >.

D.8.15. Scaling of axes

If rational_lattice or rational_offset are in the input for the cone, then the vector giving scaling
of axes can be retrieved by

vector<Integer> Cone<Integer>::getAxesScaling()

207

The cone property AxesScaling cannot be used as a computation goal, but one can ask for its compu-
tation as usual.|

D.8.16. Coordinate transformation

The coordinate transformation from the ambient lattice to the sublattice generated by the Hilbert basis
(whether it has been computed or not) can be returned as follows:

const Sublattice_Representation<Integer>& Cone<Integer>::getSublattice()

For algebraic polyhedra it defines the subspace generated by the (homogenized) cone.

An object of type Sublattice_Representation models a sequence of Z-homomorphisms

Zr ϕ−→ Zn π−→ Zr

with the following property: there exists c ∈ Z, c 6= 0, such that π ◦ϕ = c · idZr . In particular ϕ is
injective. One should view the two maps as a pair of coordinate transformations: ϕ is determined by
a choice of basis in the sublattice U = ϕ(Zr), and it allows us to transfer vectors from U ∼= Zr to the
ambient lattice Zn. The map π is used to realize vectors from U as linear combinations of the given
basis of U ∼= Zr: after the application of π one divides by c. (If U is a direct summand of Zn, one can
choose c = 1, and conversely.) Normaliz considers vectors as rows of matrices. Therefore ϕ is given
as an r×n-matrix and π is given as an n× r matrix.

The data just described can be accessed as follows (sublattice_representation.h). For space rea-
sons we omit the class specification Sublattice_Representation<Integer>::

const vector<vector<Integer> >& getEmbedding() const

const vector<vector<Integer> >& getProjection() const

Integer getAnnihilator() const

Here “Embedding” refers to ϕ and “Projection” to π (though π is not always surjective). The “Annihi-
lator” is the number c above. (It annihilates Zr modulo π(Zn).)

The numbers n and r are accessed in this order by

size_t getDim() const

size_t getRank() const

The external index, namely the order of the torsion subgroup of Zn/U , is returned by

mpz_class getExternalIndex() const

Very often ϕ and ψ are identity maps, and this property can be tested by

bool IsIdentity() const

The constraints computed by Normaliz are “hidden” in the sublattice representation. They van be
accessed by

const vector<vector<Integer> >& getEquations() const

const vector<vector<Integer> >& getCongruences() const

But see Section D.8.3 above for a more direct access.

208

D.8.17. Coordinate transformations for precomputed data

For precomputed data we need Type::generated_lattice and Type::maximal_subspace, should they
be nontrivial. The maximal subspace is retrieved by

getMaximalSubspace()

mentioned already in Section D.8.7. The generated lattice (subspace in the algebraic case) is accessed
by

getSublattice().getEmbedding()

introduced in Section D.8.16.

D.8.18. Automorphism groups

The automorphism group is accessed by

const AutomorphismGroup<Integer>& Cone<Integer>::getAutomorphismGroup();

independently of the type of the automorphism group (see below). Only one type of automorphism
group can be computed in a run of compute(...) and this type is stored.

Contrary to other get functions, getAutomorphismGroup() does not trigger a computation since it is
unclear what quality of automorphisms is asked for. If no automorphism group has been computed, a
BadInputException is thrown.

Additionally we have

const AutomorphismGroup<Integer>&

Cone<Integer>::getAutomorphismGroup(ConeProperty::Enum quality)

in which the quality can be specified. If the automorphism group has already been computed with a
different quality, then it is recomputed.

If the automorphism group has been computed by those options that use extreme rays and support
hyperplanes, i.e., all except AmbientAutomorphisms and InputAutomorphisms, then the action of the
group is recorded in

mpz_class getOrder() const;

const vector<vector<key_t> >& getVerticesPerms() const

const vector<vector<key_t> > getExtremeRaysPerms() const

const vector<vector<key_t> > getSupportHyperplanesPrms() const

const vector<vector<key_t> > getVerticesOrbits() const

const vector<vector<key_t> > geExtremeRaystOrbits() const

const vector<vector<key_t> > getSupportHyperplanesOrbits() const

AQll these functions and the following ones belong to the class AutomorphismGroup<Integer>.

“Perms” is a shorthand for “permutations”, and each generator of the automorphism group is repre-
sented by the permutation of the extreme rays that it induces. In the permutations, objects are counted

209

from 0. The reference order of the vectors is the same as in the output files. The entry [i][j]| is the
index of the object to which the j-th object is mapped by the i-th generator of the automorphism group.

The orbits are listed one by one: each vector<key_t> contains the indices that form an orbit, and the
collection of orbits is given by the outer vector.

The action of AmbientAutomorphisms and InputAutomorphisms is documented in

const vector<vector<key_t> >& getGensPerms() const;

const vector<vector<key_t> >& getGensOrbits() const;

const vector<vector<key_t> >& getLinFormsPerms() const;

const vector<vector<key_t> >& getLinFormsOrbits() const;

where the ‘ Gens” are the input vectors representing generators of the primal cone or inequalities, given
by linear forms generating the dual cone. “LinForms” are defined only for AmbientAutomorphisms, and
they represent the coordinate linear forms. The generators from which the group has been computed
are returned by

const Matrix<Integer>& getGens() const;

The qualities of the automorphisms is returned by

set<AutomParam::Quality> getQualities() const;

and the qualities are given by

namespace AutomParam {

enum Quality {

combinatorial,

rational,

integral,

euclidean,

ambient_gen,

ambient_ineq,

input_gen,

input_ineq,

algebraic,

graded // not used at present

};

...

Input and ambient automorphisms appear twice since Normaliz records what type of input is used for
the computation, and this information is shown in the output files.

Another access is given by

string getQualitiesString()

and

string quality_to_string(AutomParam::Quality quality)

does a single conversion.

210

Moreover, you can ask

bool IsIntegralityChecked() const;

bool IsIntegral() const;

If you are interested in cycle decompositions, you can use

vector<vector<key_t> > cycle_decomposition(vector<key_t> perm, bool with_fixed_points)

where with_fixed_points decides whether cycles of length 1 are produced.

D.8.19. Class group

vector<Integer> Cone<Integer>::getClassGroup()

The return value is to be interpreted as follows: The entry for index 0 is the rank of the class group.
The remaining entries contain the orders of the summands in a direct sum decomposition of the torsion
subgroup.

D.8.20. Face lattice and f-vector

vector<size_t> Cone<Integer>::getFVector()

const map<dynamic_bitset,int>& Cone<Integer>::getFaceLattice()

Each element of the set represents a face F : the int is its codimension, and the vector<bool> v repre-
sents the facets containing F : v[i] = 1, if and only if the facet given by the i-th row of getSupportHyperplanes()
contains F . (See Section 6.17.)

The incidence matrix can be accessed by

const vector<dynamic_bitset>& Cone<Integer>::getIncidence()

These functions have dual versions:

vector<size_t> Cone<Integer>::getDualFVector()

const map<dynamic_bitset,int>& Cone<Integer>::getDualFaceLattice()

const vector<dynamic_bitset>& Cone<Integer>::getDualIncidence()

D.8.21. Integer hull

For the computation of the integer hull an auxiliary cone is constructed. A reference to it is returned by

Cone<Integer>& Cone<Integer>::getIntegerHullCone() const

For example, the support hyperplanes of the integer hull can be accessed by

MyCone.getIntegerHullCone().getSupportHyperplanes()

211

D.8.22. Projection of the cone

Like the integer hull, the image of the projection is contained in an auxiliary cone that can be accessed
by

Cone<Integer>& Cone<Integer>::getProjectCone() const

It contains constraints and extreme rays of the projection.

D.8.23. Excluded faces

Before using the excluded faces Normaliz makes the collection irredundant by discarding those that
are contained in others. The irredundant collection (given by hyperplanes that intersect the cone in the
faces) and its cardinality are returned by

const vector< vector<Integer> >& Cone<Integer>::getExcludedFaces()

size_t Cone<Integer>::getNrExcludedFaces()

For the computation of the Hilbert series the all intersections of the excluded faces are computed, and
for each resulting face the weight with which it must be counted is computed. These data can be
accessed by

const vector< pair<vector<key_t>,long> >& Cone<Integer>::getInclusionExclusionData()

The first component of each pair contains the indices of the generators (counted from 0) that lie in the
face and the second component is the weight.

The emptiness of semiopen polyhedra can be tested by

bool Cone<Integer>::isEmptySemiOpen()

If the answer is positive, an excluded face making the semiopen polyhedron empty is returned by

vector<Integer> Cone<Integer>::getCoveringFace()

D.8.24. Boolean valued results

All the “questions” to the cone that can be asked by the boolean valued functions in this section start a
computation if the answer is not yet known.

The first, the question

bool Cone<Integer>::isIntegrallyClosed()

does not trigger a computation of the full Hilbert basis. The computation stops as soon as the answer
can be given, and this is the case when an element in the integral closure has been found that is not in
the original monoid. Such an element is retrieved by

vector<Integer> Cone<Integer>::getWitnessNotIntegrallyClosed()

As discussed in Section 6.13.3 it can sometimes be useful to ask

212

bool Cone<Integer>::isPointed()

before a more complex computation is started.

The Gorenstein property can be tested with

bool Cone<Integer>::isGorenstein()

If the answer is positive, Normaliz computes the generator of the interior of the monoid. Also see D.8.9.

The next two functions answer the question whether the Hilbert basis or at least the extreme rays live
in degree 1.

bool Cone<Integer>::isDeg1ExtremeRays()

bool Cone<Integer>::isDeg1HilbertBasis()

Finally we have

bool Cone<Integer>::isInhomogeneous()

bool Cone<Integer>::isReesPrimary()

isReesPrimary() checks whether the ideal defining the Rees algebra is primary to the irrelevant max-
imal ideal.

D.8.25. Results by type

It is also possible to access (and compute if necessary) the output data of Normaliz by functions that
only depend on the C++ type of the data:

const Matrix<Integer>& getMatrixConePropertyMatrix(ConeProperty::Enum property);

const vector< vector<Integer> >& getMatrixConeProperty(ConeProperty::Enum property);

const Matrix<nmz_float>& getFloatMatrixConePropertyMatrix(ConeProperty::Enum property);

const vector< vector<nmz_float> >& getFloatMatrixConeProperty(ConeProperty::Enum property);

vector<Integer> getVectorConeProperty(ConeProperty::Enum property);

Integer getIntegerConeProperty(ConeProperty::Enum property);

mpz_class getGMPIntegerConeProperty(ConeProperty::Enum property);

mpq_class getRationalConeProperty(ConeProperty::Enum property);

renf_elem_class getFieldElemConeProperty(ConeProperty::Enum property);

nmz_float getFloatConeProperty(ConeProperty::Enum property);

size_t getMachineIntegerConeProperty(ConeProperty::Enum property);

bool getBooleanConeProperty(ConeProperty::Enum property);

For example, getMatrixConeProperty(ConeProperty::HilbertBasis) will return the Hilbert basis
as a const vector< vector<Integer> >&.

These functions make it easier to write interfaces to Normaliz since they need not to introduce new
functions for results that have one of the types listed above.

It is clear that the complex results can only be accessed via their specialized “get” functions.

213

D.9. Algebraic polyhedra

Cones over algebraic number fields are constructed by

Cone<renf_elem_class>(...)

where ... stands for all the variants that have been discussed in Section D.4, except that all matrices
must be of type vector<vector<renf_elem_class> > or Matrix<renf_elem_class>. Cone<renf_elem_class>(...)
is predefined in libnormaliz.

Note that not all integer, rational or float input types are allowed; see Section 7.

After the construction of the cone you must use

void Cone<renf_elem_class>::setRenf(renf_class* renf)

It is necessary to forward the information about the number field to derived cones. In the other direction:

renf_class* Cone<renf_elem_class>::getRenf()

Since version 1.0.0 the renf_class* is administrated through a std::shared_ptr<const renf_class>.
It is returned by

const std::shared_ptr<const renf_class> Cone<Integer>::getRenfSharedPtr()

One can retrieve the minimal polynomial and the embedding by

vector<string> Cone<renf_elem_class>::getRenfData()

The name of the field generator is returned by

string Cone<renf_elem_class>::getRenfGenerator()

The computation follows the same rules that have been explained above, again with some restriction of
the computation goals that can be reached. Again see Section 7.

In return values Integer must be specialized to renf_elem_class. A special return value is the volume
that in general is no longer of type mpq_class. It is retrieved by

renf_elem_class Cone<renf_elem_class>::getRenfVolume()

The number field must be defined outside of libnormaliz. Have a look at source/normaliz.cpp and
source/input.in to see the details.

The integer hull cone is of type libnormaliz::Cone<renf_elem_class>.

Remark: In the code, the template Integer does no longer stand for a truly integer type, but also for
renf_elem_class, and thus for elements from a field.

D.10. Reusing previous computation results

To some extent it is possible to exploit the results of a previous computation after the modification of a
cone (see Section D.6). This is controlled by

214

ConeProperty::Dynamic

ConeProperty::Static

where Dynamic activates this feature and Static deactivates it.

At present only results of previous convex hull computations or vertex enumerations can be reused.
Restrictions:

(1) The coordinate transformation that had been reached before the previous computation must have
remained unchanged. Note that a change may have happened as a consequence the previous
computation. For example, the addition of inequalities can reduce the dimension.

(2) If a convex hull computation simultaneously creates a triangulation, then it must start from
scratch.

An example for the use of ConeProperty::Dynamic is given in source/dynamic/dynamic.cpp. It is
compiled automatically by the autotools scripts, and can also be compiled in source by
make -f Makefile.classic dynamic.

D.11. Control of execution

D.11.1. Exceptions

All exceptions that are thrown in libnormaliz are derived from the abstract class NormalizException
that itself is derived from std::exception:

class NormalizException: public std::exception

The following exceptions must be caught by the calling program:

class ArithmeticException: public NormalizException

class BadInputException: public NormalizException

class NotComputableException: public NormalizException

class FatalException: public NormalizException

class NmzCoCoAException: public NormalizException

class InterruptException: public NormalizException

The ArithmeticException leaves libnormaliz if a nonrecoverable overflow occurs (it is also used
internally for the change of integer type). This should not happen for cones of integer type mpz_class,
unless it is caused by the attempt to create a data structure of illegal size or by a bug in the program. The
BadInputException is thrown whenever the input is inconsistent; the reasons for this are manifold. The
NotComputableException is thrown if a computation goal cannot be reached. The FatalException

should never appear. It covers error situations that can only be caused by a bug in the program. At
many places libnormaliz has assert verifications built in that serve the same purpose.

There are two more exceptions for the communication within libnormaliz that should not leave it:

class NonpointedException: public NormalizException

class NotIntegrallyClosedException: public NormalizException

The InterruptException is discussed in the next section.

215

D.11.2. Interruption

In order to find out if the user wants to interrupt the program, the functions in libnormaliz test the
value of the global variable

volatile sig_atomic_t nmz_interrupted

If it is found to be true, an InterruptException is thrown. This interrupt leaves libnormaliz, so
that the calling program can process it. The Cone still exists, and the data computed in it can still be
accessed. Moreover, compute can again be applied to it.

The calling program must take care to catch the signal caused by Ctrl-C and to set nmz_interrupted=1.

D.11.3. Inner parallelization

By default the cone constructor sets the maximal number of parallel threads to 8, unless the system has
set a lower limit. You can change this value by

long set_thread_limit(long t)

The function returns the previous value.

set_thread_limit(0) raises the limit set by libnormaliz to ∞.

D.11.4. Outer parallelization

The libnormaliz functions can be called by programs that are parallelized via OpenMP themselves. The
functions in libnormaliz switch off nested parallelization.

As a test program you can compile and run outerpar in source/outerpar. Compile it by For the
compilation of maxsimplex.cpp use

make -f Makefile.classic outerpar

in source.

D.11.5. Control of terminal output

By using

bool setVerboseDefault(bool v)

one can control the verbose output of libnormaliz. The default value is false. This is a global setting
that effects all cones constructed afterwards. However, for every cone one can set an individual value
of verbose by

bool Cone<Integer>::setVerbose(bool v)

Both functions return the previous value.

The default values of verbose output and error output are std::cout and std::cerr. These values can
be changed by

216

void setVerboseOutput(std::ostream&)

void setErrorOutput(std::ostream&)

D.11.6. Printing the cone

The function

void Cone<Integer>::write_cone_output(const string& output_file)

writes the standard out file using the content of output_file instead of the standard <project>. It is
meant as a tool for debugging libraries. It is not possible to write any file with a suffix different from
out.

We also have

void Cone<Integer>::write_precomp_for_input(const string& output_file)

It writes an input file with precomputed data (see Section 8.4). writes the file with suffix precomp.in

file using the content of output_file instead of the standard <project>.

D.12. A simple program

The example program is a simplified version of the program on which the experiments for the paper
“Quantum jumps of normal polytopes” by W. Bruns, J. Gubeladze and M. Michałek, Discrete Comput.
Geom. 56 (2016), no. 1, 181–215, are based. Its goal is to find a maximal normal lattice polytope P in
the following sense: there is no normal lattice polytope Q ⊃ P that has exactly one more lattice point
than P. “Normal” means in this context that the Hilbert basis of the cone over P is given by the lattice
points of P, considered as degree 1 elements in the cone.

The program generates normal lattice simplices and checks them for maximality. The dimension is set
in the program, as well as the bound for the random coordinates of the vertices.

Let us have a look at source/maxsimplex/maxsimplex.cpp. First the more or less standard preamble:

#include <cstdlib>

#include <vector>

#include <fstream>

#include <omp.h>

using namespace std;

#include "libnormaliz/libnormaliz.h"

Since we want to perform a high speed experiment which is not expected to be arithmetically demand-
ing, we choose 64 bit integers:

typedef long long Integer;

The first routine finds a random normal simplex of dimension dim. The coordinates of the vertices are
integers between 0 and bound. We are optimistic that such a simplex can be found, and this is indeed

217

no problem in dimension 4 or 5.

Cone<Integer> rand_simplex(size_t dim, long bound){

vector<vector<Integer> > vertices(dim+1,vector<Integer> (dim));

while(true){ // an eternal loop ...

for(size_t i=0;i<=dim;++i){

for(size_t j=0;j<dim;++j)

vertices[i][j]=rand()%(bound+1);

}

Cone<Integer> Simplex(Type::polytope,vertices);

// we must check the rank and normality

if(Simplex.getRank()==dim+1 && Simplex.isDeg1HilbertBasis())

return Simplex;

}

vector<vector<Integer> > dummy_gen(1,vector<Integer>(1,1));

// to make the compiler happy

return Cone<Integer>(Type::cone,dummy_gen);

}

We are looking for a normal polytope Q ⊃ P with exactly one more lattice point. The potential extra
lattice points z are contained in the matrix jump_cands. There are two obstructions for Q = conv(P,z)
to be tested: (i) z is the only extra lattice point and (ii) Q is normal. It makes sense to test them in this
order since most of the time condition (i) is already violated and it is much faster to test.

bool exists_jump_over(Cone<Integer>& Polytope,

const vector<vector<Integer> >& jump_cands){

vector<vector<Integer> > test_polytope=Polytope.getExtremeRays();

test_polytope.resize(test_polytope.size()+1);

for(size_t i=0;i<jump_cands.size();++i){

test_polytope[test_polytope.size()-1]=jump_cands[i];

Cone<Integer> TestCone(Type::cone,test_polytope);

if(TestCone.getNrDeg1Elements()!=Polytope.getNrDeg1Elements()+1)

continue;

if(TestCone.isDeg1HilbertBasis())

return true;

}

return false;

}

In order to make the (final) list of candidates z as above we must compute the widths of P over its
support hyperplanes.

vector<Integer> lattice_widths(Cone<Integer>& Polytope){

if(!Polytope.isDeg1ExtremeRays()){

218

cerr<< "Cone in lattice_widths is not defined by lattice polytope"<< endl;

exit(1);

}

vector<Integer> widths(Polytope.getNrExtremeRays(),0);

for(size_t i=0;i<Polytope.getNrSupportHyperplanes();++i){

for(size_t j=0;j<Polytope.getNrExtremeRays();++j){

// v_scalar_product is a useful function from vector_operations.h

Integer test=v_scalar_product(Polytope.getSupportHyperplanes()[i],

Polytope.getExtremeRays()[j]);

if(test>widths[i])

widths[i]=test;

}

}

return widths;

}

int main(int argc, char* argv[]){

time_t ticks;

srand(time(&ticks));

cout << "Seed " <<ticks << endl; // we may want to reproduce the run

size_t polytope_dim=4;

size_t cone_dim=polytope_dim+1;

long bound=6;

vector<Integer> grading(cone_dim,0);

// at some points we need the explicit grading

grading[polytope_dim]=1;

size_t nr_simplex=0; // for the progress report

Since the computations are rather small, we suppress parallelization (except for one step below).

while(true){

#ifdef _OPENMP

omp_set_num_threads(1);

#endif

Cone<Integer> Candidate=rand_simplex(polytope_dim,bound);

nr_simplex++;

if(nr_simplex%1000 ==0)

cout << "simplex " << nr_simplex << endl;

Maximality is tested in 3 steps. Most often there exists a lattice point z of height 1 over P. If so, then
conv(P,z) contains only z as an extra lattice point and it is automatically normal. In order to find such
a point we must move the support hyperplanes outward by lattice distance 1.

vector<vector<Integer> > supp_hyps_moved=Candidate.getSupportHyperplanes();

219

for(size_t i=0;i<supp_hyps_moved.size();++i)

supp_hyps_moved[i][polytope_dim]+=1;

Cone<Integer> Candidate1(Type::inequalities,supp_hyps_moved,

Type::grading,to_matrix(grading));

if(Candidate1.getNrDeg1Elements()>Candidate.getNrDeg1Elements())

continue; // there exists a point of height 1

Among the polytopes that have survived the height 1 test, most nevertheless have suitable points z close
to them, and it makes sense not to use the maximum possible height immediately. Note that we must
now test normality explicitly.

cout << "No ht 1 jump"<< " #latt " << Candidate.getNrDeg1Elements() << endl;

// move the hyperplanes further outward

for(size_t i=0;i<supp_hyps_moved.size();++i)

supp_hyps_moved[i][polytope_dim]+=polytope_dim;

Cone<Integer> Candidate2(Type::inequalities,supp_hyps_moved,

Type::grading,to_matrix(grading));

cout << "Testing " << Candidate2.getNrDeg1Elements()

<< " jump candidates" << endl; // including the lattice points in P

if(exists_jump_over(Candidate,Candidate2.getDeg1Elements()))

continue;

Now we can be optimistic that a maximal polytope P has been found, and we test all candidates z that
satisfy the maximum possible bound on their lattice distance to P.

cout << "No ht <= 1+dim jump" << endl;

vector<Integer> widths=lattice_widths(Candidate);

for(size_t i=0;i<supp_hyps_moved.size();++i)

supp_hyps_moved[i][polytope_dim]+=

-polytope_dim+(widths[i])*(polytope_dim-2);

The computation may become arithmetically critical at this point. Therefore we use mpz_class for our
cone. The conversion to and from mpz_class is done by routines contained in convert.h.

vector<vector<mpz_class> > mpz_supp_hyps;

convert(mpz_supp_hyps,supp_hyps_moved);

vector<mpz_class> mpz_grading=convertTo<vector<mpz_class> >(grading);

The computation may need some time now. Therefore we allow a little bit of parallelization.

#ifdef _OPENMP

omp_set_num_threads(4);

#endif

Since P doesn’t have many vertices (even if we use these routines for more general polytopes than
simplices), we don’t expect too many vertices for the enlarged polytope. In this situation it makes
sense to set the algorithmic variant Approximate.

Cone<mpz_class> Candidate3(Type::inequalities,mpz_supp_hyps,

Type::grading,to_matrix(mpz_grading));

220

Candidate3.compute(ConeProperty::Deg1Elements,ConeProperty::Approximate);

vector<vector<Integer> > jumps_cand; // for conversion from mpz_class

convert(jumps_cand,Candidate3.getDeg1Elements());

cout << "Testing " << jumps_cand.size() << " jump candidates" << endl;

if(exists_jump_over(Candidate, jumps_cand))

continue;

Success!

cout << "Maximal simplex found" << endl;

cout << "Vertices" << endl;

Candidate.getExtremeRaysMatrix().pretty_print(cout); // a goody from matrix.h

cout << "Number of lattice points = " << Candidate.getNrDeg1Elements();

cout << " Multiplicity = " << Candidate.getMultiplicity() << endl;

} // end while

} // end main

For the compilation of maxsimplex.cpp use

make -f Makefile.classic maxsimplex

in source. Running the program needs a little bit of patience. However, within a few hours a maximal
simplex should have emerged. From a log file:

simplex 143000

No ht 1 jump #latt 9

Testing 22 jump candidates

No ht 1 jump #latt 10

Testing 30 jump candidates

No ht 1 jump #latt 29

Testing 39 jump candidates

No ht <= 1+dim jump

Testing 173339 jump candidates

Maximal simplex found

Vertices

1 3 5 3 1

2 3 0 3 1

3 0 5 5 1

5 2 2 1 1

6 5 6 2 1

Number of lattice points = 29 Multiplicity = 275

221

E. Normaliz interactive: PyNormaliz

PyNormaliz serves three purposes:

• It is the bridge from Normaliz to SageMath.
• It provides an interactive access to Normaliz from a Python command line.
• It is a flexible environment for the exploration of Normaliz.

In the following we describe the use of PyNormaliz from a Python command line and document the
basic functions that allow the access from SageMath.

For a brief introduction please consult the PyNormaliz tutorial at https://nbviewer.jupyter.org/
github/Normaliz/PyNormaliz/blob/main/doc/PyNormaliz_Tutorial.ipynb.

You can also open the tutorial for PyNormaliz interactively on https://mybinder.org following the
link https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master.

E.1. Installation

The PyNormaliz install script assumes that you have executed the

install_normaliz_with_eantic.sh

script. (It is however possible to install PyNormaliz with fewer optional packages.) In the following
we assume that PyNormaliz resides in the subdirectory PyNormaliz of the Normaliz directory. This
automatically the case if you have downloaded a Normaliz source package. If you have obtained
Normaliz or PyNormaliz in another way, make sure that our assumption is satisfied.

To install PyNormaliz navigate to the Normaliz directory and type

./install_pynormaliz.sh --user

The script detects your Python3 version, assuming the executable is in the PATH. Note that the installa-
tion stores the produced files in ~/.local.

If you want to install PyNormaliz system wide, replace --user by --sudo. Then you will be asked for
your root password. The following additional options are available for install_pynormaliz.sh:

• --python3 <path>: Path to a python3 executable.
• --prefix <path>: Path to the Normaliz install path

Depending on your setup, you might be able to install PyNormaliz via pip, typing

pip3 install PyNormaliz

at a command prompt.

The installation requires the setuptools. If you are missing them install them with pip3.

E.2. The high level interface by examples

PyNormaliz has a high level interface which allows a very intuitive use. We load PyNormaliz:

222

https://nbviewer.jupyter.org/github/Normaliz/PyNormaliz/blob/main/doc/PyNormaliz_Tutorial.ipynb
https://nbviewer.jupyter.org/github/Normaliz/PyNormaliz/blob/main/doc/PyNormaliz_Tutorial.ipynb
https://mybinder.org
https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master

winfried@ryzen:~$ python3

Python 3.6.9 (default, Oct 8 2020, 12:12:24)

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import PyNormaliz

>>> from PyNormaliz import *

E.2.1. Creating a cone

The only available class in PyNormaliz is Cone. As often in this manual, “cone” includes a lattice of
reference, unless we are working in an algebraic number field. We come back to this case below. First
we have to create a cone (and a lattice). We can use all input types that are allowed in Normaliz input
files. They must be given as named parameters as in the following example:

>>> C = Cone(cone = [[1,3],[2,1]])

This is the example from Section 2.3. There can be several input matrices. The example shows us
how Normaliz matrices are represented as Python types: each row is a list, and the matrix then is a
list whose members are the lists representing the rows. Important: This encoding matches exactly the
formatted matrices in Normaliz input files.

It is possible to use (decimal) fractions in the input, but they must be encoded as strings. Our cone from
above could be defined by

>>> C = Cone(cone = [[1,"3.0"],[1,"1/2"]])

This creates a Cone<mpz_class> on the Normaliz side. One can also create a Cone<long long> by

>>> C = Cone(cone = [[1,"3.0"],[1,"1/2"]], CreateAsLongLong = True)

In the following Cone (with a capital C) is a class defined in PyNormaliz.py. An instance of this class
contains an NmzCone which is the Python equivalent of a Cone<Integer> defined on the Normaliz side.
The NmzCone in the Cone C, is referred to by C.cone. This is only important when one wants to access
the low level interface.

One can create a cone from a Normaliz input file as follows:

C = Cone(file = "example/small")

It will read the file small.in in the directory example /relative to the current directory. CreateAsLongLong
= True can be used.

E.2.2. Vectors, matrices and numbers

The matrix format of the input t is of course also used in PyNormaliz results:

>>> C.HilbertBasis()

[[1, 1], [1, 2], [1, 3], [2, 1]]

223

PyNormaliz contains some functions that help reading complicated output. For matrices we can use

>>> print_matrix(C.HilbertBasis())

1 1

1 2

1 3

2 1

Similarly

>>> print_matrix(C.SupportHyperplanes())

-1 2

3 -1

Since our input defines an original monoid, we can ask for the module generators over it:

>>> print_matrix(C.ModuleGeneratorsOverOriginalMonoid())

0 0

1 1

1 2

2 2

2 3

Some numerical invariants:

>>> C.Rank()

2

>>> C.EmbeddingDim()

2

>>> C.ExternalIndex()

1

>>> C.InternalIndex()

5

If we want to know whether a certain cone property has already been computed, we can ask for it:

>>> C.IsComputed("HilbertBasis")

True

The essential point is that this query does not force the computation if the property has not yet been
computed. There are several more computation goals that come as matrices, vectors or numbers. We
list all of them:

• Matrices: ExtremeRays, VerticesOfPolyhedron, SupportHyperplanes, HilbertBasis,

ModuleGenerators, Deg1Elements, LatticePoints, ModuleGeneratorsOverOriginalMonoid,

ExcludedFaces, OriginalMonoidGenerators, MaximalSubspace, Equations, Congruences

• Matrices with floating point entries: ExtremeRaysFloat, SuppHypsFloat, VerticesFloat

• Vectors: Grading, Dehomogenization, WitnessNotIntegrallyClosed, GeneratorOfInterior,

CoveringFace, AxesScaling

• Numbers: TriangulationSize, NumberLatticePoints, RecessionRank, AffineDim, ModuleRank,

Rank, EmbeddingDim, ExternalIndex, TriangulationDetSum, GradingDenom, UnitGroupIndex,

224

InternalIndex,

The numbers have several different representations on the Normaliz side. In Python they are all (long)
integers.

E.2.3. Triangulations, automorphisms and face lattice

Some of the raw output is complicated:

>>> U = C.UnimodularTriangulation()

>>> U

[[[[1, 2], 1, []], [[2, 3], 1, []], [[0, 3], 1, []]], [[1, 3], [2, 1], [1, 1], [1, 2]]]

Taking a close look, we see two members of the outermost list. The second is an ordinary matrix,
namely the matrix of the rays of the triangulation:

>>> print_matrix(U[1])

1 3

2 1

1 1

1 2

The first member is not a matrix, but close enough so that we can use print_matrix:

>>> print_matrix(U[0])

[1, 2] 1 []

[2, 3] 1 []

[0, 3] 1 []

In each line we find the information on a simplicial cone, first the list of the rays by their indices relative
to the matrix of rays (counting rows from 0). The next is the determinant relative to a lattice basis (in
our case the unit vectors). In a unimodular triangulation these determinants must of course be 1. The
third component is the list of excluded faces if we have computed a disjoint decomposition. This is
explained in Section 6.14.2.

To see an even more complicated data structure we ask for the combinatorial automorphisms:

>>> G = C.CombinatorialAutomorphisms()

>>> G

[2, Faase, False, [[[1, 0]], [[0, 1]]], [[], []], [[[1, 0]], [[0, 1]]]]

There are 6 components on the outermost level. The first is the order of the group. The second amswers
the question whther the integrality of the automorphisms has been checked. The answer is always “no”
for compinatorial automorphisms, and therefore the third give the answer “no” to the question whether
the automorphisms are integral.

The next three contain information on the

• extreme rays of the (recession) cone,
• the vertices of the polyhedron,
• he support hyperplane

225

in this order. In each of them we find

• the action of the group generators on the respective vectors,
• their orbits under the group.

In our case there are no vertices of the polyhedron (only defined for inhomogeneous input). This
explains the empty list. Fortunately we can print the complicated result nicely with an explanation:

>>> print_automs(G)

order 2

permutations of extreme rays of (recession) cone

0 : [1, 0]

orbits of extreme rays of (recession) cone

0 : [0, 1]

permutations of support hyperplanes

0 : [1, 0]

orbits of support hyperplanes

0 : [0, 1]

It makes sense to have a look at Section 6.22. (Here we count from 0.)

AmbientAutomorphisms and InputAutomorphisms yield a slightly different result. The permutations
and orbits in the third element of the outer list now refer to the input vectors. The fourth element gives
data for thempty set, as does the fifth for InputAutomorphisms . For AmbientAutomorphisms it lists
the permutation and oprbits of the coordinates of the ambient lattice. All this is folloowed by the input
vectors for reference. A simple example:

>>> C = Cone(cone = [[0,1],[1,0]])

>>> C.AmbientAutomorphisms()

[2, True, True, [[[1, 0]], [[0, 1]]], [[], []], [[[1, 0]], [[0, 1]]], [[0, 1], [1, 0]]]

>>> print_automs(C.AmbientAutomorphisms())

order 2

automorphisms are integral

permutations of input vectors

0 : [1, 0]

orbits of input vectors

0 : [0, 1]

permutations of coordinates

0 : [1, 0]

orbits of coordinates

0 : [0, 1]

input vectors

0 1

1 0

Of course, we also want to know the face lattice:

>>> C.FaceLattice()

[[[0, 0], 0], [[1, 0], 1], [[0, 1], 1], [[1, 1], 2]]

Hard to read. Much better:

226

>>> print_matrix(C.FaceLattice())

[0, 0] 0

[1, 0] 1

[0, 1] 1

[1, 1] 2

So there are four faces. The list contains the support hyperplanes that meet in the face and the number
is the codimension. The support hyperplanes are given by their row indices relative to the matrix of
support hyperplanes. Also see Section 6.17. The f -vector:

>>> C.FVector()

[1, 2, 1]

If you want to limit the codimension of the faces computed with FaceLattice or FVector, set the
bound by

>>> SetFaceCodimBound(1)

Try it and ask for FaceLattice once more. If you want to get rid of a previously set bound:

>>> SetFaceCodimBound()

or take −1 as the argument.

We also have a printer for the Stanley decomposition:

>>> print_Stanley_dec(C.StanleyDec())

Try it.

The cone properties that fall into the categories discussed in this section are: Triangulation,

UnimodularTriangulation, LatticePointTriangulation, AllGeneratorsTriangulation,

PlacingTriangulation, PullingTriangulation, StanleyDec, InclusionExclusionData, Automorphisms,

CombinatorialAutomorphisms, RationalAutomorphisms, EuclideanAutomorphisms, AmbientAutomorphisms,

InputAutomorphisms, FaceLattice, DualFaceLattice, FVector, DualFVector, Incidence, DualIncidence.

E.2.4. Hilbert and other series

Now we turn to the Hilbert series.

>>> C.HilbertSeries()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/winfried/../PyNormaliz.py", line 403, in inner

return self._generic_getter(name, **kwargs)

File "/home/winfried/.../PyNormaliz.py", line 393, in _generic_getter

PyNormaliz_cpp.NmzCompute(self.cone, input_list)

PyNormaliz_cpp.NormalizError: Could not compute:

No grading specified and cannot find one. Cannot compute some requested properties!

Indeed, we forgot the grading. We could have added it at the time of construction

227

>>> C = Cone(cone = [[1,3],[2,1]], grading = [[1,2]])

where it must be given as a matrix with a single row. Or we can add it later:

>>> C.SetGrading([1,2])

(A similar function is SetProjectionCoords.) We check the grading:

>>> C.Grading()

[[1, 2], 1]

The number 1 following the vector is the grading denominator.

Now:

>>> C.HilbertSeries()

[[1, -1, 0, 1, 0, 0, 0, 1, 0, -1, ..., 0, 0, 0, 0, 1, -1, 1], [1, 28], 0]

For space reasons we have omitted some components in the first list, the numerator of the Hilbert
series. The second gives the denominator, and the last is the shift. Much nicer:

>>> print_series(C.HilbertSeries())

(1 - t + t^3 + t^7 - t^9 + t^10 + t^12 - t^13 + t^14 + t^19 + t^24 - t^25 + t^26)

(1 - t) (1 - t^28)

Options can be added as named parameters:

>>> print_series(C.HilbertSeries(HSOP = True))

(1 + t^3 + t^5 + t^6 + t^8)

(1 - t^4) (1 - t^7)

This representation is much more natural in this case. Perhaps we want so see the Hilbert quasipolyno-
mial:

>>> print_quasipol(C.HilbertQuasiPolynomial())

28 5

-5 5

...

10 5

5 5

divide all coefficients by 28

In this case it seems better to print the polynomials as vectors of coefficients.

If the quasipolynomial has a large period and high degree, you may want to restrict the information to
only a few coefficients from the top:

SetNrCoeffQuasiPol(bound)

The bound −1 or SetNrCoeffQuasiPol()mean “all”, in case you want to get rid of the previously set

228

bound.

Normaliz can compute the values of the coefficients of the Hilbert series for you:

>>> C.HilbertSeriesExpansion(10)

[1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2]

For the weighted Ehrhart series we need a polynomial. Let’s add it (can also be done in the constructor
with polynomial = <string>):

>>> C.SetPolynomial("x[1]+x[2]")

True

Then

print_series(C.WeightedEhrhartSeries())

We don’t show the result because it is too long for this manual.

The cone properties of this section: HilbertSeries, HilbertQuasiPolynomial, EhrhartSeries,

EhrhartQuasiPolynomial, WeightedEhrhartSeries, WeightedEhrhartQuasiPolynomial

E.2.5. Multiplicity, volume and integral

The first time we see a fraction printed as such:

>>> C.Multiplicity()

’5/28’

Since Python has no built-in type for fractions, we print it as a string.

>>> C.EuclideanVolume()

’0.3993’

The decimal fractions is rounded to 4 decimals. If you need more precision, you can directly use the
low level interface:

>>> NmzResult(C.cone,"EuclideanVolume")

0.39929785312496247

By default, the low level interface returns raw values. We use it once more:

>>> NmzResult(C.cone,"EuclideanIntegral")

0.2638217958147073

We have integrated our polynomial from above. In case we have forgotten it:

>>> C.Polynomial()

’x[1]+x[2]’

For computations with fixed precision one can specify the number of decimal digits:

>>> C.setDecimalDigits(50)

229

This function is hardly necessary, since the default value of 100 is almost always satisfactory.

The cone properties of this section: Multiplicity, Volume, Integral, VirtualMultiplicity,

EuclideanVolume, EuclideanIntegral, ReesPrimaryMultiplicity

E.2.6. Integer hull and other cones as values

Let us define a nonintegral polytope (we vary the format of the numbers on purpose):

>>> R = Cone(vertices = [["-3/2", ’7/5’,1], [9,-15,4], ["7.0",8,3]])

>>> R.VerticesOfPolyhedron()

[[-15, 14, 10], [7, 8, 3], [9, -15, 4]]

The last component of each vector acts as the denominator of the first two, and we recognize the
fractions in the input. Numerical invariants available with inhomogeneous input:

>>> R.AffineDim()

2

>>> R.RecessionRank()

0

>>> R.LatticePoints()

[[-1, 1, 1], [0, 0, 1], [0, 1, 1], [1, -2, 1], ... [2, -1, 1], [2, 0, 1], [2, 1, 1], [2, 2, 1]]

>>> H = R.IntegerHull()

>>> H

<Normaliz Cone>

So we have computed a new cone, the cone over the polytope (in this case) spanned by the lattice points
in the polytope with rational vertices [[-15, 14, 10], [7, 8, 3], [9, -15, 4]].

>>> H.VerticesOfPolyhedron()

[[-1, 1, 1], [1, -2, 1], [1, 2, 1], [2, -3, 1], [2, 2, 1]]

The last component is 1 as it must be for lattice points of the polytope.

>>> print_matrix(H.SupportHyperplanes())

-1 0 2

0 -1 2

1 -2 3

1 1 1

3 2 1

The other computations that return a cone are ProjectCone and SymmetrizedCone.

E.2.7. Boolean values

We ask our cone C many questions:

>>> C.IsGorenstein()

False

>>> C.IsDeg1HilbertBasis()

230

False

>>> C.IsDeg1ExtremeRays()

False

>>> C.IsPointed()

True

>>> C.IsInhomogeneous()

False

>>> C.IsEmptySemiOpen()

...

PyNormaliz_cpp.NormalizError: ...: IsEmptySemiOpen can only be computed with excluded faces

>>> C.IsIntegrallyClosed()

False

>>>

>>> C.IsReesPrimary()

...

PyNormaliz_cpp.NormalizError: Could not compute: IsReesPrimary !

E.2.8. Algebraic polyhedra

For an algebraic polyhedron we must define the real embedded number field over which the polyhedron
is living. This information is given in the cone constructor:

>>> A = Cone(number_field=["a^2-2", "a", "1.4+/-0.1"],

vertices = [["1/2a", "13/3",1], ["-3a^1",-6,2], [-6, "-1/2a-7",1]])

>>> print_matrix(A.VerticesOfPolyhedron())

-6 -1/2*a-7 1

-3/2*a -3 1

1/2*a 13/3 1

>>> print_matrix(A.VerticesFloat())

-6.0000 -7.7071 1.0000

-2.1213 -3.0000 1.0000

0.7071 4.3333 1.0000

>>> A.RenfVolume()

’-19*a+42’

>>> A.EuclideanVolume()

’7.5650’

>>> print_matrix(A.LatticePoints())

-5 -6 1

...

-1 1 1

0 3 1

>>> A.NumberFieldData()

(’a^2 - 2’, ’[1.414213562373095048801688724209698078569671875376948073176679738 +/- 3.57e-64]’)

>>> A.GetFieldGeneratorName()

’a’

231

The only point to notice is RenfVolume that we must use instead of Volume here. The number field data
show you to what precision

√
2 had to be computed to make all decisions about positivity for our little

polytope.

E.2.9. The collective compute command and algorithmic variants

So far we have asked Normaliz for a single cone property. It is also possible to bundle several compu-
tation goals and options in a single compute command:

>>> C.Compute("HilbertBasis", "HilbertSeries", "ClassGroup", "DualMode")

True

>>> C.IsComputed("ClassGroup")

True

>>> C.ClassGroup()

[0, 5]

which means that the class group is isomorphic to Z/(5). The first number 0 indicates that the class
group has rank 0.

The collective compute command not only allows you to sset several computation goals simultaneously.
It allows you to specify algorithmic variants, like DulaMode. There is a whole collection of variants
explained elsewhere in this manual:

DefaultMode, Approximate, BottomDecomposition, NoBottomDec, DualMode,

PrimalMode, Projection, ProjectionFloat, NoProjection, Symmetrize, NoSymmetrization,

NoSubdivision, NoNestedTri, KeepOrder, HSOP, NoPeriodBound, NoLLL, NoRelax, Descent, NoDescent,

NoGradingDenom, GradingIsPositive, ExploitAutomsVectors (not yet implemented), ExploitIsosMult,

StrictIsoTypeCheck, SignedDec, NoSignedDec, FixedPrecision

E.2.10. Miscellaneous functions

In order to get some information about what is going on in Normaliz, we can switch on the terminal
output:

>>> C = Cone(cone = [[1,3],[2,1]], grading = [[1,2]])

>>> C.SetVerbose()

False

>>> C.HilbertBasis(DualMode = True)

Computing support hyperplanes for the dual mode:

**
starting full cone computation

Generators sorted lexicographically

Starting primal algorithm (only support hyperplanes) ...

Start simplex 1 2

Pointed since graded

Select extreme rays via comparison ... done.

--

transforming data... done.

232

**
computing Hilbert basis ...

==

cut with halfspace 1 ...

Final sizes: Pos 1 Neg 1 Neutral 0

==

cut with halfspace 2 ...

Final sizes: Pos 3 Neg 3 Neutral 1

Hilbert basis 4

Find degree 1 elements

transforming data... done.

[[1, 1], [2, 1], [1, 2], [1, 3]]

The return value of SetVerbose is the old value of verbose. We had to redefine C to get of the already
computed Hilbert basis. The very last line is our Hilbert basis.

If we want to see all data computed for C, call

>>> C.print_properties()

ExtremeRays: NumberLatticePoints:

[[2, 1], [1, 3]] 0

SupportHyperplanes: Rank:

[[-1, 2], [3, -1]] 2

HilbertBasis: EmbeddingDim:

[[1, 1], [2, 1], [1, 2], [1, 3]] 2

Deg1Elements: IsPointed:

[] True

OriginalMonoidGenerators: IsDeg1ExtremeRays:

[[1, 3], [2, 1]] False

MaximalSubspace: IsDeg1HilbertBasis:

[] False

Grading: IsIntegrallyClosed:

[[1, 2], 1] False

GradingDenom: IsInhomogeneous:

1 False

UnitGroupIndex: Sublattice:

1 [[[1, 0], [0, 1]], [[1, 0], [0, 1]], 1]

InternalIndex:

Typeset in two columns. The last property we see is Sublattice. It consists of two matrices and a
number. See Section D.8.16 for the interpretation.

Finally, we can write a Normaliz output file:

>>> C.WriteOutputFile("Wonderful")

True

Now you should find a file Wonderful.out in the current directory.

One can also write a file for the inout of precomputed data:

233

>>> C.WritePrecompData("Wonderful")

True

It creates the file Wonderful.precomp.in.

E.3. The low level interface

The low level interface is contained in NormalizModule.cpp. Its functions are listed in
PyNormaliz_cppMethods[]. They allow the construction of an NmzCone (accompanied by a lattice),
the computation in it, and give access to the computation results. The use of the low level interface is
indirectly explained by the examples above. Therefore we keep the discussion short.

E.3.1. The main functions

For the construction one uses

NmzCone(**kwargs)

The keyword arguments kwargs transport Normaliz input types and the corresponding matrices in
Python format. In addition we must use number_field for algebraic polyhedra. You can use polynomial
for computations with a polynomial weight. (There is also an extra function for setting the polynomial;
see below.) You can also ask for a Cone<long long> by adding CreateAsLongLong = True.

Once and for all: in the functions listed in the following that apply to a specific NmzCone, this NmzCone
must be the first argument in *args.

Computations are started by

NmzCompute(*args)

The arguments list the computation goals and options as strings.

Access to the computation results is given by

NmzResult(*args, **kwargs)

There must be exactly two positional arguments. The first is the NmzCone, the second names the result
to be returned, given as a string.

The *kwargs specify handlers, routines that format the raw results of output types that are not existent
in Python or should be formatted for another reason. The potential handlers:

RatHandler defines the formatting of fractions.
FloatHandler defines the formatting of floating point numbers.
NumberfieldElementHandler defines the formatting of number field elements.
VectorHandler defines the formatting of vectors.
MatrixHandler defines the formatting of matrices.

The default handler for vectors and matrices is list, and there is not be much point in changing it. If
you don’t like lists, you can set VectorHandler=tuple, for example. But especially RatHandler and
NumberfieldElementHandler are very useful since the raw versions are difficult to read. Examples of

234

handlers can be found in PyNormaliz.py.

Note: When NmzResult is called, its first action is to reset the handlers to the raw format. Then the
kwargs are evaluated. In other words: the values of the handlers are only applied to the current result,
and not to future ones.

In the same way as the data access functions of Normaliz, NmzResult triggers the computation of the
required result if it should not have been computed yet. Whether a result has been computed yet can be
checked by

NmzIsComputed(*args)

The second argument of exactly 2 is the result whose computation is to be checked, given as a string.

E.3.2. Additional input and modification of existing cones

These functions allow the input of data that cannot be passed through the cone constructor or modify a
cone after construction. For example:

NmzSetGrading(cone, grading)

The grading is a vector encoded as a Python list. Similarly

NmzSetProjectionCoords(cone, coordinates)

where coordinates is a list with entries 0 or 1.

NmzSetPolynomial(cone, polynomial)

The polynomial is given as a string.

NmzSetNrCoeffQuasiPol(cone, number)

NmzSetFaceCodimBound(cone, number)

Do what the names say.

NmzModifyCone(cone, type, matrix)

This is the PyNormaliz version of the libnormaliz function modifyCone. Please have a look at Sec-
tion D.6.

E.3.3. Additional data access

Some values cannot be returned as cone properties. For them we have additional access functions.

NmzGetPolynomial(cone)

returns the polynomial weight if one has been set.

The functions

235

NmzHilbertSeriesExpansion(cone, degree)

NmzEhrhartSeriesExpansion(cone, degree)

NmzWeightedEhrhartSeriesExpansion(cone, degree)

return the expansion of the named series up to the given degree as a list of numbers.

NmzIntegerHullCone(cone)

NmzProjectCone(cone)

NmzSymmetrizedCone(cone)

return NmzCone.

NmzGetRenfInfo(cone)

NmzFieldGenName(cone)

return the data defining the number field.

E.3.4. Miscellaneous functions

NmzSetVerbose(cone, value=True)

NmzSetVerboseDefault(value=True)

The first sets verbose to the specified value for cone, whereas the second sets it for all subsequently
defined cones.

NmzConeCopy(cone)

returns a copy of cone.

NmzSetNumberOfNormalizThreads(number)

does what its name says. The previous number of threads is returned.

NmzWriteOutputFile(cone, project)

NmzWritePrecompData(cone, project)

The first writes a Normaliz output file whose name is the string project with the suffix .out, ther
second a file whose name is the string project with suffix precomp.in.

The functions

NmzHasEantic(cone)

NmzHasCoCoA(cone)

NmzHasFlint(cone)

NmzHasFlint(cone)

return True or False, depending on whether Normaliz has been built with the corresponding package.

NmzListConeProperties()

236

lists all cone properties in case you should have forgotten any of them.

error_out(PyObject* m)

writes an error message if something bad has happened.

E.3.5. Raw formats of numbers

All Normaliz integers are transformed to Python long integers, and floating point numbers are trans-
formed to Python floats.

Numbers of type mpq_class are represented by a list with two components on the Python side, namely
the numerator and the denominator.

An algebraic number is represented by a list whose members are rational numbers each of which is a
list with two members. They are the coefficients of the polynomial representing the algebraic number.

F. Distributed computation for volume via signed
decomposition

Normaliz offers a possibility to compute volumes via signed decomposition by distributing
the task to several computers or nodes in a gigh performance cluster that run independently of
each other. The principal approach:

(1) The first step is the computation of the hollow triangulation and the generic vector on a
single machine. This step can require considerable time and memory.

(2) These data (and some more) are written to “hollow tri” files.
(3) The files are read by Normaliz with the --Chunk option that makes it compute the contri-

bution to the volume that comes from a single data file (“chunk”) and write this volume
to a “mult” file.

(4) A final run of Normaliz with the --AddChunks option so that it reads all the “mult” files
and adds the partial volumes.

This is certainly a robust and flexible approach to distributed computation. While the main
purpose of distributed computation is a massive increase in parallelization, one should con-
sider its use even if the computation is done on a single machine. It limits the loss of data
caused by system crashes or similar interruptions to a small amount and allows easy repair.
Another advantage is that the most time consuming step (3) needs very little RAM for a single
“chunk”, compared to step (1).

To make Normaliz write the data files and to stop once they have been written, one uses the
cone property

DistributedComp

The size of the locks can be set by

block_size_hollow_tri <S>

237

to the input file where <S> is the number of simplices of the full triangulation that should go
into a single output file. The default value chosen by DistributedComp is 500,000.

The output files are

<project>.hollow_tri.<n>.gz

where <n> numbers these files consecutively, starting from 0. As usual, <project> is the name
of the project. These files are gzipped to save disk space.

Moreover, there is a common data file:

<project>.basic.data

Each file of the hollow triangulation must be run by Normaliz with the option --Chunk. The
input is read from stdin to which the gzipped file(s) must be decompressed and redirected or
piped. The directory source/chunk contains run_single.sh hat can be used for this purpose:

time zcat $1.hollow_tri.$2.gz | ../normaliz --Chunk

where $1 is the project name and $2 is the number <n> from above. The OpenMP paralleliza-
tion is set to 8 threads by this call, but one can add the option -x=<p> where <p> is the number
of parallel threads to be used. Normaliz processes the single blocks with the fixed precision
of 100 decimal digits. The path to normaliz (../ above) must be adapted to your system.

On a cluster system one uses a script to start a job array where our number <n> serves as an
index for the array. An example:

#SBATCH --job-name="CondEffPlur"

#SBATCH --comment="CondEffPlur"

#SBATCH --time=24:00:00

#SBATCH --ntasks=8

#SBATCH --threads-per-core=1

#SBATCH --mem=15000

#SBATCH --array=0-359%100

each job will see a different ${SLURM_ARRAY_TASK_ID}

../run_single.sh CondEffPlur ${SLURM_ARRAY_TASK_ID}

In this example <n> runs from 0 to 359, and 100 jobs can be processed simultaneously.

Finally, execute

normaliz <project> --AddChunks

to sum the partial multiplicities in the files <project>.mult.<n> The result is written to the
terminal and also to the file <project>.total.mult.

238

References

[1] J. Abbott, A. M. Bigatti and G. Lagorio, CoCoA-5: a system for doing Computations in Com-
mutative Algebra. Available at http://cocoa.dima.unige.it.

[2] V. Almendra and B. Ichim, jNormaliz 1.7. Available at https://normaliz.uos.de.

[3] V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne
and J. Wu, A User’s Guide for LattE integrale v1.7.2, 2013. Software package LattE is available
at https://www.math.ucdavis.edu/~latte/.

[4] D. Bremner, M. D. Sikirić, D. V. Pasechnik, Th. Rehn and A. Schürmann, Computing symmetry
groups of polyhedra. LMS J. Comp. Math. 17 (2014), 565–581.

[5] St. Brumme, Hash libary. Package available at https://create.stephan-brumme.com/.

[6] W. Bruns, P. Garcia-Sanchez, C. O’Neill and D. Wilburne, Wilf’s conjecture in fixed multiplicity.
Int. J. Algebra Comp. 30 (2020), 861–882.

[7] W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory. Springer, 2009.

[8] W. Bruns, R. Hemmecke, B. Ichim, M. Köppe and C. Söger, Challenging computations of
Hilbert bases of cones associated with algebraic statistics. Exp. Math. 20 (2011), 25–33.

[9] W. Bruns and B. Ichim, Normaliz: algorithms for rational cones and affine monoids. J. Algebra
324 (2010) 1098–1113.

[10] W. Bruns and B. Ichim, Polytope volume by descent in the face lattice and applications in social
choice. Math. Prog. Comp. 113 (2020), 415–442.

[11] W. Bruns, B. Ichim and C. Söger, The power of pyramid decomposition in Normaliz. J. Symb.
Comp. 74 (2016), 513–536.

[12] W. Bruns, B. Ichim and C. Söger, Computations of volumes and Ehrhart series in four candidates
elections. Ann. Oper. Res. 280 (2019), 241–265.

[13] W. Bruns and R. Koch, Computing the integral closure of an affine semigroup. Univ. Iagell. Acta
Math. 39 (2001), 59–70.

[14] W. Bruns, R. Sieg and C. Söger, Normaliz 2013–2016. In G. Böckle, W. Decker and G. Malle,
editors, Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory,
pages 123–146. Springer, 2018.

[15] W. Bruns and C. Söger, The computation of weighted Ehrhart series in Normaliz. J. Symb.
Comp. 68 (2015), 75–86.

[16] V. Delecroix, embedded algebraic number fields (on top of antic), package available at https:
//github.com/flatsurf/e-antic.

[17] B. Büeler and A. Enge, Vinci. Package available from https://www.math.u-bordeaux.fr/

~aenge/

[18] B. Büeler, A. Enge, K. Fukuda, Exact volume computation for polytopes: a practical study. In:
Polytopes - combinatorics and computation (Oberwolfach, 1997), pp. 131 – 154, DMV Sem. 29,
Birkhäuser, Basel, 2000.

[19] P. Filliman, The volume of duals and sections of polytopes. Mathematika 37 (1992), 67–80.

[20] S. Gutsche, M. Horn and C. Söger, NormalizInterface for GAP. Available at https://github.
com/gap-packages/NormalizInterface.

239

http://cocoa.dima.unige.it
https://normaliz.uos.de
https://www.math.ucdavis.edu/~latte/
https://create.stephan-brumme.com/
https://github.com/flatsurf/e-antic
https://github.com/flatsurf/e-antic
https://www.math.u-bordeaux.fr/~aenge/
https://www.math.u-bordeaux.fr/~aenge/
https://github.com/gap-packages/NormalizInterface
https://github.com/gap-packages/NormalizInterface

[21] S. Gutsche and R. Sieg, PyNormaliz - an interface to Normaliz from python. Available at https:
//github.com/Normaliz/PyNormaliz.

[22] W. B. Hart, Algebraic Number Theory In C. Package available at https://github.com/wbhart/
antic.

[23] W. B. Hart, F. Johansson and S. Pancratz, FLINT: Fast Library for Number Theory. Available at
https://flintlib.org.

[24] F. Johansson, Arb - a C library for arbitrary-precision ball arithmetic. Available at https://
arblib.org/.

[25] J. Lawrence, Polytope volume computation. Math. Comp. 57 (1991), 259–271.

[26] M. Köppe and S. Verdoolaege, Computing parametric rational generating functions with a pri-
mal Barvinok algorithm. Electron. J. Comb. 15, No. 1, Research Paper R16, 19 p. (2008).

[27] B. D. McKay and A. Piperno, Practical graph isomorphism, II. J. Symbolic Comput. 60 (2014),
94–112.

[28] L. Pottier, The Euclide algorithm in dimension n. Research report, ISSAC 96, ACM Press 1996.

[29] A. Schürmann, Exploiting polyhedral symmetries in social choice. Social Choice and Welfare
40 (2013), 1097–1110.

[30] B. Sturmfels, Gröbner baes and convex polytopes. American Mathematical Society 1996.

240

https://github.com/Normaliz/PyNormaliz
https://github.com/Normaliz/PyNormaliz
https://github.com/wbhart/antic
https://github.com/wbhart/antic
https://flintlib.org
https://arblib.org/
https://arblib.org/

Index of keywords

-h, 80
-n, 80
-p, 80
-x=<T>, 90
--help, -?, 90
--ignore, -i, 78
--version, 90
<project>.basic.data, 238
<project>.hollow_tri.<n>.gz, 238
--OutputDir=<outdir>, 91
--<suffix>, 90
--all-files, -a, 90
--files, -f, 90
--ignore, -i, 91
--verbose, -c, 90

AffineDim, 87
AllGeneratorsTriangulation, 81, 132
AmbientAutomorphisms, 82, 153
Approximate, -r, 84, 98
Automorphisms, 82

BigInt, -B, 83
block_size_hollow_tri <n>, 77
block_size_hollow_tri <S>, 237
BottomDecomposition, -b, 85

ClassGroup, -C, 80
CombinatorialAutomorphisms, 82
cone, 69
cone_and_lattice, 69, 70
ConeDecomposition, -D, 81
Congruences, 87
congruences, 70
constraints <n>, 72
constraints <n> symbolic, 73
CoveringFace, 87
cst, 164

decimal_digits <N>, 108
decimal_digits <n>, 77
DefaultMode, 78

Deg1Elements, -1, 79
Dehomogenization, 87
dehomogenization, 75
Descent ExploitIsosMult, 85, 105
Descent, -F, 85, 104
DistributedComp, 86, 237
DualFaceLattice, 82
DualFVector, 82
DualIncidence, 82
DualMode Deg1Elements, -d1, 88
DualMode HilbertBasis, -dN, 88
DualMode LatticePoints, 88
DualMode ModuleGenerators, 88
DualMode, -d, 84

egn,esp, 164
EhrhartQuasiPolynomial, 87
EhrhartSeries, 80
EmbeddingDim, 87
Equations, 87
equations, 70
EuclideanAutomorphisms, 82
EuclideanVolume, 87
excluded_faces, 70
ExcludedFaces, 87
expansion_degree <n>, 77
ext, 164
ExternalIndex, 87
extreme_rays, 69
ExtremeRays, 87, 88
ExtremeRaysFloat, 79

face_codim_bound <n>, 77
FaceLattice, 81
FixedPrecision, 86, 108
FVector, 81

gen, 164
generated_lattice, 70
GeneratorOfInterior, 87
Grading, 87

241

grading, 75
GradingDenom, 87
GradingIsPositive, 87

hilbert_basis_rec_cone, 70
HilbertBasis, -N, 79
HilbertQuasiPolynomial, 87
HilbertSeries,-q, 80
hom_constraints, 73
HSOP, 80
ht1, 164

Incidence, 81
InclusionExclusionData, 87
inequalities, 70
inhom_congruences, 72
inhom_equations, 71
inhom_excluded_faces, 72
inhom_inequalities, 71
InputAutomorphisms, 82, 154
IntegerHull, -H, 80
Integral, -I, 82
InternalIndex, 87
inv, 164
IsDeg1ExtremeRays, 83
IsDeg1HilbertBasis, 83
IsEmptySemiopen, 82
IsGorenstein, -G, 83
IsInhomogeneous, 87
IsIntegrallyClosed, -w, 82
IsPointed, 83
IsReesPrimary, 83
IsTriangulationNested, 88
IsTriangulationPartial, 88

KeepOrder, -k, 85

lat, 164
lattice, 69
lattice_ideal, 74
LatticePoints, 79
LatticePointTriangulation, 81, 132
LongLong, 83

maximal_subspace, 69

MaximalSubspace, 87
mod, 164
ModuleGenerators, 87
ModuleGeneratorsOverOriginalMonoid, -M,

79
ModuleRank, 87
msp, 164
Multiplicity, -v, 80

NoBottomDec, -o, 85
NoDescent, 85, 104
NoExtRaysOutput, 51, 91
NoGradingDenom, 86
NoHilbertBasisOutput, 91
NoLLL, 85, 96
NoMatricesOutput, 91
NoPeriodBound, 80
NoProjection, 84
NoRelax, 85, 97
NoSignedDec, 85, 107
NoSubdivision, 86
NoSuppHypsOutput, 51, 91
NoSymmetrization, -X, 86
nr_coeff_quasipol <n>, 77
NumberLatticePoints, 80, 99

offset, 71
open_facets, 76
OriginalMonoidGenerators, 87

PlacingTriangulation, 81, 133
polytope, 69
PrimalMode, -P, 84
ProjectCone, 79, 120
Projection, -j, 84, 94
projection_coordinates, 76
ProjectionFloat, -J, 84, 95
PullingTriangulation, 81, 133

Rank, 87
rational_lattice, 69
rational_offset, 71
RationalAutomorphisms, 82
RecessionRank, 87
rees_algebra, 69

242

ReesPrimaryMultiplicity, 87

saturation, 69
SignedDec, 85, 106
signs, 70
StanleyDec, -y, 81
strict_inequalities, 72
strict_signs, 72
StrictIsoTypes, 105
StrictTypeChecking, 86
Sublattice, -S, 79
subspace, 69
SuppHypsFloat, 52, 79
support_hyperplanes, 70
SupportHyperplanes, -s, 79, 88
Symmetrize, -Y, 86

tgn, 127
total_degree, 75
tri, 127
Triangulation, -T, 81
TriangulationDetSum, 81
TriangulationSize, -t, 81

UnimodularTriangulation, 81, 132
unit_matrix, 74
unit_vector <n>, 74
UnitGroupIndex, 87

vertices, 71
VerticesFloat, 52, 79
VerticesOfPolyhedron, 87, 88
VirtualMultiplicity, -L, 82
Volume, -V, 52, 80

WeightedEhrhartQuasiPolynomial, 88
WeightedEhrhartSeries, -E, 82
WitnessNotIntegrallyClosed, W, 79
WritePreComp, 165

243

	Introduction
	The objectives of Normaliz
	Platforms, implementation and access from other systems
	Major changes relative to version 3.7.0
	Future extensions
	Download and installation
	Exploring Normaliz online

	Normaliz by examples
	Terminology
	Practical preparations
	A cone in dimension 2
	The Hilbert basis
	The cone by inequalities
	The interior

	A lattice polytope
	Only the lattice points

	A rational polytope
	The series with vertices?
	The rational polytope by inequalities

	Magic squares
	Blocking the grading denominator
	With even corners
	The lattice as input

	Decomposition in a numerical semigroup
	A job for the dual algorithm
	A dull polyhedron
	Defining it by generators

	The Condorcet paradox
	Excluding ties
	At least one vote for every preference order
	The f-vector with codimension bound

	Testing normality
	Computing just a witness

	Convex hull computation/vertex enumeration
	Lattice points in a polytope and its Euclidean volume
	The integer hull
	Inhomogeneous congruences
	Lattice and offset
	Variation of the signs

	Integral closure and Rees algebra of a monomial ideal
	Only the integral closure of the ideal

	Starting from a binomial ideal

	The input file
	Input items
	The ambient space and lattice
	Plain vectors
	Formatted vectors
	Plain matrices
	Formatted matrices
	Constraints in tabular format
	Constraints in symbolic format
	Polynomials
	Rational numbers
	Decimal fractions and floating point numbers
	Numbers in algebraic extensions of Q
	Computation goals and algorithmic variants
	Comments
	Restrictions
	Homogeneous and inhomogeneous input
	Default values
	Normaliz takes intersections

	Homogeneous generators
	Cones
	Lattices

	Homogeneous Constraints
	Cones
	Lattices

	Inhomogeneous generators
	Polyhedra
	Affine lattices

	Inhomogeneous constraints
	Polyhedra
	Affine lattices

	Tabular constraints
	Forced homogeneity

	Symbolic constraints
	Relations
	Unit vectors and unit matrix
	Grading
	With lattice_ideal input

	Dehomogenization
	Open facets
	Coordinates for projection
	Numerical parameters
	Degree bound for series expansion
	Number of significant coefficients of the quasipolynomial
	Codimension bound for the face lattice
	Number of digits for fixed precision
	Block size for distributed computation

	Pointedness
	The zero cone

	Computation goals and algorithmic variants
	Default choices and basic rules
	Computation goals
	Lattice data
	Support hyperplanes and extreme rays
	Hilbert basis and lattice points
	Enumerative data
	Combined computation goals
	The class group
	Integer hull
	Triangulation and Stanley decomposition
	Face structure
	Semiopen polyhedra
	Automorphism groups
	Weighted Ehrhart series and integrals
	Boolean valued computation goals

	Integer type
	The choice of algorithmic variants
	Primal vs. dual
	Lattice points in polytopes
	Bottom decomposition and order
	Multiplicity, volume and integrals
	Symmetrization
	Subdivision of simplicial cones
	Options for the grading

	Control of computations and communication with interfaces
	Rational and integer solutions in the inhomogeneous case

	Running Normaliz
	Basic rules
	Info about Normaliz
	Control of execution
	Interruption
	Control of output files
	Ignoring the options in the input file

	Advanced topics
	Computations with a polytope
	Lattice normalized and Euclidean volume
	Developer's choice: homogeneous input

	Lattice points in polytopes once more
	Project-and-lift
	Project-and-lift with floating point arithmetic
	LLL reduced coordinates and relaxation
	The triangulation based primal algorithm
	Lattice points by approximation
	Lattice points by the dual algorithm
	Counting lattice points

	The bottom decomposition
	Subdivision of large simplicial cones
	Primal vs. dual – division of labor
	Various volume versions
	The primal volume algorithm
	Volume by descent in the face lattice
	Descent exploiting isomorphism classes of faces
	Volume by signed decomposition
	Fixed precision for signed decomposition
	Comparing the algorithms

	Checking the Gorenstein property
	Symmetrization
	Computations with a polynomial weight
	A weighted Ehrhart series
	Virtual multiplicity
	An integral

	Expansion of the Hilbert or weighted Ehrhart series
	Series expansion
	Counting lattice points by degree
	Significant coefficients of the quasipolynomial

	Explicit dehomogenization
	Projection of cones and polyhedra
	Nonpointed cones
	A nonpointed cone
	A polyhedron without vertices
	Checking pointedness first
	Input of a subspace
	Data relative to the original monoid

	Exporting the triangulation
	Nested triangulations
	Disjoint decomposition

	Terrific triangulations
	Just Triangulation
	All generators triangulation
	Lattice point triangulation
	Unimodular triangulation
	Placing triangulation
	Pulling triangulation

	Exporting the Stanley decomposition
	Face lattice, f-vector and incidence matrix
	Dual face lattice, f-vector and incidence matrix

	Module generators over the original monoid
	An inhomogeneous example

	Lattice points in the fundamental parallelepiped
	Semiopen polyhedra
	Rational lattices
	Automorphism groups
	Euclidean automorphisms
	Rational automorphisms
	Integral automorphisms
	Combinatorial automorphisms
	Ambient automorphisms
	Automorphisms from input

	Precomputed data
	Precomputed cones and coordinate transformations
	An inhomogeneous example
	Precomputed Hilbert basis of the recession cone

	Algebraic polyhedra
	An example
	Input
	Computations

	Optional output files
	The homogeneous case
	Modifications in the inhomogeneous case
	Algebraic polyhedra
	Precomputed data for future input

	Performance
	Parallelization
	Running large computations

	Distribution and installation
	Docker image
	Binary release
	Source package
	Conda
	Cloning the GitHub repository

	Building Normaliz yourself
	Prerequisites
	Linux
	Mac OS X

	Normaliz at a stroke
	Packages for rational polyhedra
	CoCoALib
	nauty
	Hash libary
	Flint

	Packages for algebraic polyhedra
	MS Windows

	Copyright and how to cite
	Mathematical background and terminology
	Polyhedra, polytopes and cones
	Cones
	Polyhedra
	Affine monoids
	Affine monoids from binomial ideals
	Lattice points in polyhedra
	Hilbert series and multiplicity
	The class group

	Annotated console output
	Primal mode
	Dual mode

	Normaliz 2 input syntax
	libnormaliz
	The master header file
	Optional packages and configuration
	Integer type as a template parameter
	Alternative integer types
	Decimal fractions and floating point numbers

	Construction of a cone
	Construction from an input file

	Setting and changing additional data
	Polynomial
	Grading
	Projection coordinates
	Numerical parameters

	Modifying a cone after construction
	Computations in a cone
	Retrieving results
	Checking computations
	Rank, index and dimension
	Support hyperplanes and constraints
	Extreme rays and vertices
	Generators
	Lattice points in polytopes and elements of degree 1
	Hilbert basis
	Module generators over original monoid
	Generator of the interior
	Grading and dehomogenization
	Enumerative data
	Weighted Ehrhart series and integrals
	Triangulation and disjoint decomposition
	Stanley decomposition
	Scaling of axes
	Coordinate transformation
	Coordinate transformations for precomputed data
	Automorphism groups
	Class group
	Face lattice and f-vector
	Integer hull
	Projection of the cone
	Excluded faces
	Boolean valued results
	Results by type

	Algebraic polyhedra
	Reusing previous computation results
	Control of execution
	Exceptions
	Interruption
	Inner parallelization
	Outer parallelization
	Control of terminal output
	Printing the cone

	A simple program

	Normaliz interactive: PyNormaliz
	Installation
	The high level interface by examples
	Creating a cone
	Vectors, matrices and numbers
	Triangulations, automorphisms and face lattice
	Hilbert and other series
	Multiplicity, volume and integral
	Integer hull and other cones as values
	Boolean values
	Algebraic polyhedra
	The collective compute command and algorithmic variants
	Miscellaneous functions

	The low level interface
	The main functions
	Additional input and modification of existing cones
	Additional data access
	Miscellaneous functions
	Raw formats of numbers

	Distributed computation for volume via signed decomposition
	References
	Index of keywords

