tracefct

keeping track of where you’ve been - a function tracer
edition 1.0.10 for tracefct version 1.0.10
29 July 2011

Diab Jerius
Dan Nguyen

Copyright (©) 2006 Smithsonian Institution

tracefct is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

tracefct is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA

Table of Contents

1 Copying ...

2 Introd
2.1 Usage

UCLION . . . ot

3 Library Routines................................
3.1 tFiasSert .

3.2 tf_init

3.3 b enter . oo
34 tfleave ..o

3.5 tf_die
3.6 tf_exit

3.7 timeSSage . oo
3.8 L VIMESSage ..t
3.9 tfodump_stack ...
310 tfclose ..o

3.11 tf_op

L

Chapter 1: Copying 1

1 Copying

The software described by this manual is copyright (©) 2006 Smithsonian Institution. All
rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Chapter 2: Introduction 3

2 Introduction

tracefct is a package of routines which help a program keep track of its function calling
sequence so that it can provide that information on fatal errors. It also provides a uniform
format for messages to stderr which identify the process producing the messages.

Messages have the following appearance:
pid: exec-name: message

where pid is the process id number, exec-name is the name of the executable, and message
is a user provided message.

2.1 Usage

The tracefct library is initialized with tf_init (). This should be called before any other
routine, as it registers the name of the executable. Directly after entering a function,
tf_enter () should be called with the name of the function. Before leaving a function tf_
leave () should be called. If a fatal error occurs, tf_exit () should be called with a return
value that will be passed to the invoking process and a message to be written to stderr.
Interesting return values are predefined in the ‘exiterrvals.h’ header file. tf_exit () does
not return to the calling function, but calls exit (). Warning or diagnostic messages may
be written via tf_message or tf_vmessage. The function stack may be written at any time
with tf_dump_stack().

tracefct has a predefined output stream of stderr. However, it is sometimes useful to
have the output sent to another file instead. This is accomplished with the tf_open function.
In the case that the tracefct is not to stderr, the standard prefix is not printed. The
output stream may be reset to stderr with the tf_close function. Note that the tf_exit
will write both to stderr and the tracefct output stream, provided that they are different.

Chapter 3: Library Routines 5

3 Library Routines

3.1 tf_assert

program verification

Synopsis

#include <tracefct.h>

tf_assert (expression);
tf_assertl(expression);
tf_assert2(expression);
tf_assert3(expression);
tf_assert4(expression);
tf_assertb5(expression);

Parameters

expression
A standard C expression.

Description

The tf_assert routines are C preprocessor macros that indicate that expression is expected
to be true at the point in the program that the macros are invoked. If expression is false,
a diagnostic message is printed to stderr indicating the file and line number at which the
assertion failed, and the program exits.

Unlike the standard assert macro, tf_assert is always valid. The other routines are
valid depending upon the value of the preprocessor macro TF_ASSERT_LEVEL. The macro
tf_assertn is valid if ‘TF_ASSERT_LEVEL >= n’. By default, TF_ASSERT_LEVEL is undefined
(equivalently set to ‘0’). This setup provides a compile time choice of diagnostic output.

The benefit of these routines over the standard assert macro is that they use the

tracefct standard output format.

3.2 tf_init

Initialize the function trace stack.

Synopsis

#include <tracefct/tracefct.h>

void tf_init(
const char *name,
int print_it,
int num_fct_to_print

Chapter 3: Library Routines 6

)

Parameters

const char *name
the name of the program, preferrably argv[0]. path information (if
present) is not stripped.

int print_it
boolean flag. if true, a message will be output upon entry and exit
of a function.

int num_fct_to_print
if positive, only the requested number of function names will be
printed. if non-positive, all of the function names will be printed.

Description

This routine initializes the function stack as well as registering the name of the executable.
The calling routine can also set up some output options which determine the depth of the
function stack to print and whether a diagnostic should be printed at every entry and return
of a function. tracefct stores the passed pointer to the program name, it does not make

a copy of the string. The calling function mustn’t invalidate the pointer.

3.3 tf_enter

Register function.

Synopsis

#include <tracefct/tracefct.h>

void tf_enter(const char *name);

Parameters

const char *name
the name of the function.

Description

This routine is called upon entry into a function. It registers the function’s name so that it
can be used in messages. Note that it saves the pointer to the function name, it does not

make a copy of the string.

3.4 tf_leave

Deregister a function.

Chapter 3: Library Routines 7

Synopsis

#include <tracefct/tracefct.h>

void tf_leave(void);

Description

This routine is called upon exit from a function. It deregisters the last registered function.

3.5 tf_die

Exit a program, dumping the function stack.

Synopsis

#include <tracefct/tracefct.h>

void tf_die(
const char *format,

)

Parameters

const char *format
a printf style format string. passed to vsprintf

additional arguments to be passed to viprintf

Description

This function prints an error message to stderr as well as the tracefct output stream
(if different from stderr) and then exits the program with a value of EXIT_FAILURE. The
error message is passed in the same fashion as the arguments to vprintf or sprintf. The
message may contain multiple output lines (i.e., multiple newline characters). If a trailing
newline character is not specified, it will be appended.

Contrast this with tf_exit.

3.6 tf_exit

Exit a program, dumping the function stack.

Synopsis

#include <tracefct/tracefct.h>

void tf_exit(
int exit_code,

Chapter 3: Library Routines 8

const char *format,

)

Parameters

int exit_code
the exit code to be returned to the system

const char *format
a printf style format string. passed to vsprintf

additional arguments to be passed to viprintf

Description

This function prints an error message to stderr as well as the tracefct output stream (if
different from stderr) and then exits the program with the supplied error code. Interesting
error codes are predefined in ‘exiterrvals.h’. The error message is passed in the same
fashion as the arguments to vprintf or sprintf. The message may contain multiple output
lines (i.e., multiple newline characters). If a trailing newline character is not specified, it

will be appended.

3.7 tf_message
Print a formatted message to the tracefct output stream.

Synopsis

#include <tracefct/tracefct.h>

void tf_message(
const char *format,

)

Parameters

const char *format
a printf style string

objects to print

Description

This function prints a user supplied message to the tracefct output stream, prefixed by
the standard tracefct style prefix string. The message is passed in the same fashion as
the arguments to printf, allowing formatted output. Unlike tf_exit, a newline character

is not appended to the message.

Chapter 3: Library Routines 9

3.8 tf_vmessage
Print a message to stderr using a stdargs argument list.

Synopsis

#include <tracefct/tracefct.h>

void tf_vmessage (
const char *format,
va_list args

)
Parameters

const char *format
a printf style string

va_list args
objects to print

Description

This function prints a user supplied message to stderr, prefixed by the standard tracefct
style prefix string. The error message is passed in the same fashion as the arguments
to vprintf. Note that vmessage expects a va_list to be passed, rather than a variable

argument list. Unlike tf_exit, a newline character is not appended to the message.

3.9 tf_dump_stack

Dump the called function stack

Synopsis

#include <tracefct/tracefct.h>
void tf_dump_stack(void);

Description

This function dumps the current function stack

3.10 tf_close

rest the tracefct output stream to stderr.

Synopsis

#include <tracefct/tracefct.h>

void tf_close(void);

Chapter 3: Library Routines 10

Description

tf_close resets the output stream to stderr, closing the file previously opened by tf_open.

3.11 tf_open

redirect the tracefct output stream

Synopsis

#include <tracefct/tracefct.h>
int tf_open(const char *file);

Parameters
const char *file

the file to which messages are to be written

Description

tf_open serves to change the tracefct output stream to the specified file. Normally
tracefct writes to stderr. tf_exit always writes to stderr (see Section 3.6 [tf_exit],
page 7). To reset the output stream, see Section 3.10 [tf_close|, page 9. If the current
output stream is not stderr, it is automatically closed.

If the passed filename is the string ‘stderr’, tf_open will use stderr.

Returns

It returns zero upon success, non-zero upon failure.

	Copying
	Introduction
	Usage

	Library Routines
	tf_assert
	tf_init
	tf_enter
	tf_leave
	tf_die
	tf_exit
	tf_message
	tf_vmessage
	tf_dump_stack
	tf_close
	tf_open

