
The pyCRAC Manual

version 1.3.2

Shaun Webb, Grzegorz Kudla and Sander Granneman

Sander Granneman

sgrannem@.ed.ac.uk

07-05-2018

mailto:sgrannem@.ed.ac.uk

Contents

1 Overview 1

1.1 pyCRAC publication . 1

1.2 Background . 1

1.3 Summary of the available tools . 2

1.4 Why pyCRAC? . 2

1.5 License and availability . 4

1.6 Contributors to pyCRAC . 4

2 Installation requirements 7

3 Quick start guide 9

3.1 How to install pyCRAC . 9

3.2 PyCRAC test data . 9

3.3 Checking your GTF annotation file . 10

4 General usage information 11

4.1 pyCRAC tools options documentation 11

4.2 Genes and transcripts . 11

4.3 Aligning reads to the genomic reference sequence 12

4.4 Supported file formats . 13

4.4.1 Input files must be tab-delimited 13

4.4.2 Processing and manipulating GTF feature files 14

4.4.3 Support for other tabular annotation formats 14

4.4.4 Chromosomal sequence files also need to be in tab-delimited format 15

4.4.5 Novoalign and BAM/SAM formats 16

4.4.6 Handling paired-end data sets . 16

4.5 Data processing fundamentals . 16

4.5.1 Common options . 16

4.5.2 Read sequence correction . 18

i

CONTENTS CONTENTS

4.5.3 Calculating overlap between reads and genomic features 19

4.5.4 Alignment qualities and alignment scores 19

4.5.5 How to deal with untranslated (UTRs) and flanking regions and

how manually set their coordinates 20

4.5.6 Reads, cDNAs, blocks, clusters and multiple alignment locations . 22

4.5.7 Using genomic and coding sequences as reference 24

4.5.8 Filtering the data for reads with mutations 24

4.5.9 Additional common options . 24

4.5.10 File handling options . 25

5 The pyCRAC tools 26

5.1 pyBarcodeFilter . 26

5.1.1 Usage and option summary . 27

5.1.2 Output files . 29

5.2 pyReadCounters . 29

5.2.1 Usage and option summary . 29

5.2.2 Default behaviour . 29

5.2.3 Command line examples . 30

5.2.4 Output files . 33

5.3 pyClusterReads . 36

5.3.1 Default behaviour . 36

5.3.2 Output files . 37

5.3.3 Command line examples . 39

5.4 pyPileup and pyReadAligner . 40

5.4.1 Usage and option summary . 41

5.4.2 Default behaviour . 41

5.4.3 Output files . 42

5.4.4 Command line examples . 42

5.5 pyMotif . 44

5.5.1 Motif search algorithm . 44

5.5.2 Usage and option summary . 45

5.5.3 Default behaviour . 45

5.5.4 pyMotif-specific options . 46

5.5.5 Output files . 46

5.5.6 Command line examples . 47

5.6 pyBinCollector . 49

5.6.1 Usage and option summary . 49

ii

CONTENTS CONTENTS

5.6.2 Default behaviour . 49

5.6.3 Output files . 51

5.6.4 Command line examples . 51

5.7 pyCalculateFDRs . 56

5.7.1 Input and output files . 58

5.7.2 Selecting significant clusters using pyCalculateFDRs and bedtools 59

5.8 pyCalculateMutationFrequencies . 61

5.8.1 Command line examples . 61

6 The pyCRAC scripts 62

6.1 Utilities . 62

6.1.1 pyAlignment2Tab.py . 62

6.1.2 pyFasta2Tab.py . 63

6.1.3 pyCalculateChromosomeLengths.py 63

6.2 Processing fastq and fasta formatted data 64

6.2.1 Removing PCR duplicates by collapsing the data 64

6.2.2 Removing PCR duplicates using random nucleotide information . 66

6.3 GTF file manipulation tools . 67

6.3.1 pyCheckGTFfile.py . 67

6.3.2 pyExtractLinesFromGTF.py . 69

6.3.3 pyGTF2bed . 69

6.3.4 pyGTF2bedGraph . 70

6.3.5 pyGTF2sgr.py . 72

6.3.6 pyGetGTFSources.py . 74

6.3.7 pyGetGeneNamesFromGTF.py 75

6.3.8 pySelectMotifsFromGTF.py . 76

6.3.9 pyNormalizeIntervalLengths.py 77

iii

List of Figures

4.1 Schematic representation of how pyCRAC tools calculate chromosomal mapping

positions using mutation information stored in novo or SAM/BAM files 13

4.2 Sequence correction and highlighting in pyCRAC 18

4.3 Calculating overlap between read mapping positions and genomic features. An

example showing the effects of changing the overlap setting in pyCRAC tools. 19

4.4 Example showing how to add UTR coordinates to GTF annotation files.

UTR coordinates are indicated as exons or UTRs 21

4.5 The GTF2 parser calculates 5 and 3 UTR coordinates by comparing start

and end positions of ”exon” and ”CDS” features. NOTE that the stop

codon is not included in CDS features. UTR coordinates can also be

included as separate features, indicated as 5UTR and 3UTR, respectively.

TSS indicates the transcriptional start site, whereas pA indicates the poly-

adenylation site. Red arrows indicate 300 nucleotide long 5 and 3 UTR

sequences. 21

4.6 Examples showing removal of putative PCR duplicates (blocks) and clus-

ter generation. Shown is a schematic representation of a gene (YFG1)

containing two exons and one intron. Reads and clusters are indicated

as thick black lines. Mutations are indicated as asterisks. (A) All reads

that mapped to YFG1 are displayed. (B) PCR duplicates or ”blocks” are

condensed into one cDNA sequence using pyFastqDuplicateRemover. Note

that positions of mutations are considered when removing duplicates, how-

ever, reads with the same coordinates are still counted as a single cDNA

during cluster formation. (C) Clusters generated from at least two overlap-

ping cDNA sequences using pyClusterReads. This step removes the reads

forming the large block in the second exon of the gene. (D) Clusters gener-

ated from at least five unique cDNAs. This removes the cDNA sequences

mapped to the 5’ region of the gene. 23

iv

LIST OF FIGURES LIST OF FIGURES

5.1 Example of a header after splitting randomly-barcoded data with pyBar-

codeFilter. If the barcode sequence file indicates barcodes with random

nucleotides, the tool will remove the barcode and attach the random bar-

code sequence (red) to the header with two hashes (blue). 27

5.2 Example plots indicating high-and low-complexity datasets 34

5.3 Example of a pyReadCounters hittable output file 34

5.4 Example of a pyReadCounters cDNAs GTF output file 35

5.5 A few lines from a pyClusterReads GTF output file 38

5.6 The pyPileup -s coding flag can be used to remove intron sequences. Shown

are two plots displaying the read distribution over a gene called YFG1. In

the right panel, only the hits that mapped to exons are displayed. 44

5.7 A Few lines from a k-mer Z scores.txt file generated by pyMotif. The first

column shows the k-mer sequence, the second column the Z-score for that

motif and the third column shows the mutation frequency, which indicates

the percentage of motifs that have at least one mutation in the sequence. 47

5.8 A Few lines from a pyMotif ’top k-mers in features’ GTF file. 48

5.9 Shown is a section of a pyBinCollector pileup file generated using the - -

outputall flag. Gene names are listed in the first column and each following

column shows the read densities for each bin. 52

5.10 Section of a pyBinCollector pileup file generated by including the - -outputall

flag. Gene names are listed in the first column and each following column

shows the read densities for each bin. 52

5.11 Distribution of deletions in and around the CUUG motif identified in Nab3

CRAC data . 55

5.12 A few lines from a pyCalculateFDRs.py GTF output file. 58

5.13 A few lines from a pyCalculateFDRs.py log file. 59

6.1 PyAlignment2tab can generate colourful tab formatted alignments in the

terminal. The example here shows a handful of reads from PAR-CLIP

and CRAC data aligned to the yeast SUP19 tRNA gene. The plot above

the alignment shows the corresponding pyPileup result. The gaps in the

sequence show deletions, whereas substitutions are indicated in lower case. 63

6.2 An example of a pyCalculateChromosomeLenghts.py output file. 64

v

LIST OF FIGURES LIST OF FIGURES

6.3 pyFastqDuplicateRemover scans the header for the presence of two hashes

near the end (blue) and assumes that the sequence following these hashes

(red) is the random barcode sequence. If it encounters two identical

(paired-) sequences with the same random barcode sequences, it assumes

they are PCR duplicates and collapse them into one sequence. The orange

characters indicate that this header originates from the forward sequencing

reaction. The green characters indicate an Illumina indexing sequence. . 67

6.4 Example showing what happens to the data during pyBarcodeFilter and

pyFastqDuplicateRemover processing steps. The random barcode sequence

is indicated in red, where as the barcode for the experiment is indicated

in blue. If the barcode list file contains random nucleotide (see Table 5.1)

then the pyBarcodeFilter tool will attach two hashes followed by the ran-

dom barcode sequence to the header and remove the barcode from the

sequence. The pyFastqDuplicateRemover tool then collapses the data and

converts the fastq entry into the fasta format and included the random

nucleotide sequence (red) and the number of identical sequences it found

in the raw data (orange) . 68

vi

List of Tables

1.1 Overview of main tools in the pyCRAC 3

1.2 Overview of additional tools packaged with pyCRAC. All scripts have help

menus, which can be accessed using the -h or - -help flag. 6

4.1 Example entries from a Saccharomyces cerevisiae GTF feature file. Each

column indicates a separate field in the gtf file 14

4.2 Meaning of each individual column in GTF files 15

4.3 Overview and description of frequently used pyCRAC options. The ”com-

mand” column indicates the string that needs to be added to the command

line in order to use the option. 17

4.4 Explanation of the meaning of the terms reads, cDNAs, blocks and clusters 22

5.1 Example of a barcode text file . 27

5.2 Overview of output files generated by pyMotif 46

vii

Chapter 1

Overview

1.1 pyCRAC publication

We have recently published a manuscript in Genome Biology (see Web et al, Genome

Biology 2014) where we used the pyCRAC tools to analyse Nrd1 and Nab3 binding sites

in yeast. This manuscript should give you a good idea of what you can do with the

pyCRAC scripts.

1.2 Background

The development of the CLIP and CRAC UV cross-linking and cDNA cloning techniques

allowed the identification of sites of direct protein-RNA interaction in vivo. These meth-

ods have greatly improved our understanding of function of many RNA binding proteins in

RNA metabolism and the assembly of macromolecular ribonucleoprotein complexes.The

combination of CLIP or CRAC with high-throughput sequencing (e.g. HITS-CLIP) has

substantially increased the sensitivity of the methodology and provided an unparalleled

capability to identify protein-RNA interactions transcriptome-wide. However, the analy-

sis of such high-throughput datasets can be daunting and often demands more than a basic

knowledge in bioinformatics and computer programming. When we started doing CRAC

experiments in David Tollerveys lab most of us had little or no experience with program-

ming, or with using software from a terminal. We managed to get a significant amount

of work done using existing tools, including SAM tools and programs on our Galaxy web

server, however more thorough analyses of the CRAC or CLIP high-throughput sequenc-

ing data required different options and adding these to existing programs was not always

straightforward. Eventually we wrote most of the programs ourselves because this was

often faster than trying to change existing ones. At some point almost everybody in the

Tollervey lab started applying the CRAC technique to his or her favourite protein. Many

1

1.3. SUMMARY OF THE AVAILABLE TOOLS 2

wanted to be able to analyse their own CRAC data but few had experience in data anal-

ysis or programming. There was a need for relatively simple but also flexible tools that

allowed users with little programming experience to do some analyses on CRAC of CLIP

data. For this purpose, we have compiled a set of user-friendly Python software tools,

called pyCRAC, that should simplify basic analyses of CLIP/CRAC high-throughput se-

quence data.

CLIP/CRAC cDNA preparation protocols generate directional cDNA libraries and the

sequencing data will contain strand information. PyCRAC was therefore designed to

specifically tackle directional libraries and reports sense and anti-sense hits. Some fea-

tures in pyCRAC might be useful for the analysis of data generated by other transcriptome

wide sequencing applications. NOTE!! If you want to analyse ChIP or RIPseq data you

need to use the - -ignorestrand flag with pyCRAC tools. All reads that map to genomic

features, including reads that map anti-sense, will be counted as ’sense’ reads.

This manual was written to describe the functionality of the pyCRAC tools by using

illustrations and focuses on the use of pyCRAC tools via command line. However, we have

also made most of the pyCRAC tools compatible with the Galaxy web-based interface and

this package can be downloaded from the Galaxy tool-shed at http://toolshed.g2.bx.

psu.edu/. The Galaxy pyCRAC package has the same functionalities as the command

line version and the information in this manual is also applicable to the Galaxy version.

We hope that this document will be sufficient to get you started with pyCRAC and

give you a sense of the usefulness of the pyCRAC tools. If you have any further questions,

please contact me by e-mail sgrannem@staffmail.ed.ac.uk

1.3 Summary of the available tools

PyCRAC supports a large number of operations for analysing CRAC/CLIP high-throughput

data sets. Table 1.1 summarises the main pyCRAC tools and provides a brief description

of their functionality. The functionality of these tools is discussed in detail in Chapter

5. In addition, we have also included a small number of useful scripts that can convert

output file formats or extract information from various files (see Table 1.2). The main

tools are discussed in Chapter 5, whereas the scripts are discussed in Chapter 6.

1.4 Why pyCRAC?

A large number of excellent tools have emerged in recent years, designed to process

data from various high-throughput sequencing applications. Several of these tools have

pyCRAC 1.3.2 2

http://toolshed.g2.bx.psu.edu/
http://toolshed.g2.bx.psu.edu/
mailto: sgrannem@staffmail.ed.ac.uk

1.4. WHY PYCRAC? 3

Table 1.1: Overview of main tools in the pyCRAC

Utility Description
pyBarcodeFilter Takes raw FASTQ data and a list of barcodes and

splits the data based on barcode sequences at the 5’
ends of reads. Also produces barcode statistics file.

pyReadCounters Produces a gene/transcript hittable file, including a
table describing hits in UTRs and introns, .sgr and
GTF files to visualise the reads in genome browsers.
Finally, the program produces a read statistics file,
which provides information about the complexity of
the dataset.

pyClusterReads.py Takes a GTF data file and generates clusters from
read or other interval coordinates. Produces a GTF
output file with cluster intervals and overlapping ge-
nomic features.

pyPileup Produces pileups containing the number of hits, sub-
stitutions and deletions for each nucleotide covered
by reads in specific genes or genomic regions

pyReadAligner Generates multiple sequence alignments for reads
mapped to individual genes or genomic regions. Pro-
duces a fasta output file.

pyMotif Looks for enriched sequence motifs in high-
throughput sequencing data. Produces a GTF type
output file with coordinates and Z-scores for enriched
motifs. The GTF file can be visualised in genome
browsers.

pyBinCollector Allows the user to generate genome-wide coverage
plots. Normalises gene lengths by dividing genes into
a fixed number of bins and then calculates the hit
density in each bin. The program also allows the
user to input specific bin numbers to extract block-
s/clusters present in these bins.

pyCalculateFDRs.py Takes interval information in GTF or bed format and
calculates False Discovery Rates (FDRs).

pyCalculateMutationFrequencies.py Takes an interval file and a pyReadCounters GTF file
and calculates substitution and deletion frequencies
fore each interval.

similar functionalities as some of the pyCRAC tools and in some areas are more advanced.

Why another set of tools? After having analysed numerous high-throughput sequencing

datasets, we realised that CRAC data were different in many aspects from other high-

throughput sequencing data and we had to use different approaches to tackle the data. We

needed options that were not available with existing programs and in many cases it was

not immediately clear how to add new features. The development of pyCRAC was driven

by a need for flexible, user-friendly and coherent set of tools tailored more specifically to

handle CRAC/CLIP data. We believe that one of the strengths of pyCRAC package is

the high degree of standardisation. Many of the tools have the same options that work

in the exact same way and we hope that using human readable GTF output files will

pyCRAC 1.3.2 3

1.5. LICENSE AND AVAILABILITY 4

stimulate data sharing between groups. Moreover, we have tried to make pyCRAC as

user-friendly as possible, so that laboratories that are planning on doing CRAC or CLIP

experiments but do not have a lot of experience in processing the high-throughput data,

have the opportunity to do basic analyses on their data. In addition, we believe that

for experienced python programmers it is relatively easy to add new options, making

it possible to adapt pyCRAC to their specific needs. PyCRAC was built on top of a

collection of python modules, several of which were written specifically for pyCRAC.

These could serve as a foundation for the improvement of pyCRAC or rapid development

of novel high-throughput sequencing programs. For those that are interested in using

the pyCRAC modules for programming purposes, we will provide more documentation

in the near future on our bitbucket website: http://bitbucket.org/sgrann/pycrac/

wiki/Home

We also highly recommend python programmers to look at HTseq, an excellent tool-

box that offers a comprehensive python programming framework specifically designed

to tackle high-throughput sequencing data http://www-huber.embl.de/users/anders/

HTSeq/doc/overview.html.

1.5 License and availability

This software is provided ’as-is’, without any express or implied warranty. In no event

will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial

applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that

you wrote the original software. If you use this software in a product, an acknowl-

edgment in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrep-

resented as being the original software.

3. This notice may not be removed or altered from any source distribution.

1.6 Contributors to pyCRAC

We would like to thank Rebecca Holmes, Louise McGibbon, Jai Tree and Alex Tuck for

testing the pyCRAC tools on their own CRAC data, for helpful suggestions and help with

debugging the scripts. Special thanks to Stamatina Fragkogianni for profiling some of the

pyCRAC 1.3.2 4

http://bitbucket.org/sgrann/pycrac/wiki/Home
http://bitbucket.org/sgrann/pycrac/wiki/Home
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

1.6. CONTRIBUTORS TO PYCRAC 5

code and for her help with parallelising some of the pyCRAC modules (to be included in

future pyCRAC versions). We would also like to thank Christos Josephides for helpful

suggestions on using numpy. Finally, a million thanks to David Tollervey for his support

during the development of pyCRAC and the many beta testers outside our university

who helped us improve the package. We welcome pyCRAC users to make suggestions/

provide constructive criticism and encourage any contributions, as we are keen to further

improve the pyCRAC tools. In particular, we are looking for developers interested in

helping us to improve the speed of the tools by implementing more Cython code and we

are in the process of parallelising some of the python scripts.

pyCRAC 1.3.2 5

1.6. CONTRIBUTORS TO PYCRAC 6

Table 1.2: Overview of additional tools packaged with pyCRAC. All scripts have help
menus, which can be accessed using the -h or - -help flag.

Utility Description
pyAlignment2Tab.py Converts fasta to the tabular format.
pyFasta2tab.py Generates multiple sequence alignments for reads

mapped to individual genes or genomic regions. Pro-
duces a fasta output file.

pyCalculateChromosomeLengths.py Takes a genome sequence in fasta or tab format and
generates a tab-delimited file showing chromosome
name and chromosome length.

Processing of fastq and fasta-
formatted data:
pyFastqJoiner Joins two paired-end fasta or fastq files.
pyFastqSplitter Splits joined paired-fastq or fasta files.
pyFastqDuplicateRemover Removes identical sequences from fastq and fasta

files and returns a fasta file with collapsed data. Can
also process paired-end data.

GTF file manipulation tools:
pyGTF2bed.py Converts GTF files to the bed 6 format. Gene names

present in the GTF file will be included in the bed
file.

pyGTF2bedGraph.py Generates bedgraph files for each strand. An homage
to bedtools genomecov. Takes a pyReadCounters
GTF file as input file. Can also output bedGraph
files for substitutions and deletions.

pybed2GTF.py Does the opposite of pyGTF2bed. Requires a GTF
annotation file and adds gene names and gene ids to
the output file.

pyCheckGTFfile.py Renames duplicated gene names in your GTF anno-
tation file.

pyExtractLinesFromGTF.py Extracts lines from a GTF file that contain gene
names of interest.

pyGetGTFSources.py Extracts source names from the second column in a
GTF file.

pyGetGeneNamesFromGTF.py Extracts and counts all gene names from a GTF file.
pyGTF2sgr.py Takes a pyReadCounters of pyMotif GTF file and

converts it into a sgr files for each strand. Another
homage to bedtools genomcov but has a few more
options and provides some more flexibility.

pyNormalizeIntervalLengths.py Allows you to extend the interval length to a specific
value or to set a minimum length for an interval.
Useful if you want to extend the size of intervals re-
ported by pyCRAC programs.

pySelectMotifsFromGTF.py Extracts your favourite k-mer sequence from pyMotif
GTF output files.

pyCRAC 1.3.2 6

Chapter 2

Installation requirements

The pyCRAC tools were intended to run from the terminal on Unix/OS X and Linux

based operating systems; however, we are in the process of making pyCRAC compatible

with the Galaxy web-based interface, allowing users not familiar with the terminal to

analyse their data in a web browser. These tools will be made available at the Galaxy

tool-shed (http://toolshed.g2.bx.psu.edu/). PyCRAC tools may run on Windows

operating systems but this has not been tested and will not be actively supported. Py-

CRAC requires Python 2.7 or higher, but is not yet compatible with Python 3.x. Py-

CRAC requires Cython, numpy (1.5.1 and up), pysam and bpython, which should be

automatically downloaded and installed during the pyCRAC installation process. OS X

users will also need to install Xcode developer tools, which can be downloaded from the

App store or found on the OS X installation disk. Users running OSX Mountain Lion

need to manually download the ’Command line tools’ via Xcode. Go to preferences, click

on Downloads and click on the ’install’ button for the Command line tools. PyCRAC

GTF and sgr output files can be visualised in the bioviz integrated genome browser

(IGB, http://bioviz.org/igb/). We also routinely use the UCSC genome browser to

visualise data from GTF files (http://genome.ucsc.edu). For OS X users that have

python 2.6 or lower on their system, we would recommend downloading the Enthought

Canopy python distribution (https://www.enthought.com/products/canopy/), which

is freely available to academics. This package installs python 2.7, the latest version of

numpy and various other modules required to run pyCRAC. Linux/Unix users can up-

date python using distribution specific repositories. With some OSX versions we have

experienced some problems with the pysam module during the installation. This usu-

ally was because Cython or pysam was not correctly installed. If you experience prob-

lems with this, please contact the authors. To run pyCRAC, a computer with 4 GB

of RAM is often sufficient when working with bacterial or yeast genomes; however, to

analyse CRAC data from higher eukaryotes (i.e. human, mouse) 16 GB or more is rec-

7

http://toolshed.g2.bx.psu.edu/
http://bioviz.org/igb/
http://genome.ucsc.edu
https://www.enthought.com/products/canopy/

8

ommended, particularly when dealing with large and complex datasets. In some of the

examples we use BEDTools to process data. BEDTools is a suite of flexible programs

that allow comparison of large sets of genomic features and can be very useful to manip-

ulate GTF output files generated by pyCRAC tools. BEDTools can be downloaded from

http://code.google.com/p/bedtools.

pyCRAC 1.3.2 8

http://code.google.com/p/bedtools

Chapter 3

Quick start guide

3.1 How to install pyCRAC

To install pyCRAC, go to the terminal and to the directory containing the setup.py instal-

lation file. If you downloaded the pyCRAC package to your desktop, change the directory

to the pyCRAC folder in the terminal and use the following command to install pyCRAC:

1 sudo python setup.py install

If this command does not work, try running sudo python setup.py build first and then re-

run the install command. The installer will generate a pyCRAC folder in the /user/local/

directory and installs various annotation files and genomic sequences in the ”db” folder.

On some linux distributions python easy install and python development (python dev)

files need to be installed prior to installing pyCRAC.

1 pyReadCounters -h

This should display a detailed pyReadCounters.py help menu. To run pyCRAC scripts

you basically need to provide the name of the script, locations to various input files and

you can add numerous options. An example is shown below. Additional usage examples

and detailed explanations are described in Chapters 4 and 5 of this manual.

3.2 PyCRAC test data

The pyCRAC package contains some test data that the program uses during installation

to check if all the tools are installed properly. By default the test data is placed in the

9

3.3. CHECKING YOUR GTF ANNOTATION FILE 10

/usr/local/pyCRAC/tests folder and contains a test.novo file. This novo file was gen-

erated from Saccharomyces cerevisiae CRAC data and only contains mapped reads and

can be used to test the various settings in pyCRAC. After installation, you can find a

folder named ”db” in the /usr/local/pyCRAC directory, which contains a Saccharomyces

cerevisiae FASTA and a GTF annotation file.

1 pyReadCounters.py -f SolexaData.sam --file_type=sam --gtf=yeast.gtf

This command runs the pyReadCounters.py program using default settings. This reports

overlap between read sequences and genomic features, using the SolexaData.sam file and

yeast GTF feature file that contains chromosomal coordinates of genomic features.

3.3 Checking your GTF annotation file

All the pyCRAC tools heavily rely on GTF annotation files. These can be obtained from

many sources (such as UCSC or ENSEMBL) and can contain mistakes. These include

duplicated gene name and/or gene id features. The GTF parser included in pyCRAC

stores both gene id and gene name annotations and sometimes the same gene name an-

notations are used for different gene id numbers. This can lead to errors in the data

processing and it is critical that you make sure that this is not the case for your GTF

file. This can be a problem in recent mouse and human GTF annotation files from EN-

SEMBL. Before you start, we would recommend using the pyCheckGTFfile.py script to

check your GTF annotation file for any duplicate names.

1 pyCheckGTFfile.py --gtf=myfavhumangtf.gtf -o mycorrectedfavgtf.gtf

IMPORTANT! We strongly recommend downloading the ENSEMBL igenomes from

the Illumina website:

https://support.illumina.com/sequencing/sequencing_software/igenome.ilmn

pyCRAC 1.3.2 10

https://support.illumina.com/sequencing/sequencing_software/igenome.ilmn

Chapter 4

General usage information

4.1 pyCRAC tools options documentation

Some pyCRAC tools have a large number of options. To make pyCRAC programs as

user-friendly as possible, we have included help menus with detailed instructions for each

option present in the pyCRAC programs. More detailed explanation on how to use these

options is discussed in section 4.5. To access the help menu, use the ”-h: or ”- -help”

option in the command line. An example is shown on the next page. The options are

divided into common options used by many pyCRAC tools, tool-specific options and file

input options.

4.2 Genes and transcripts

In this documentation we quite regularly use the terms genes and transcripts and it is

important to understand their definition, which are based on the GTF2.2 specification.

In higher eukaryotes, transcription of genes rarely generates a single transcript. Alterna-

tive splicing and transcription initiation at different sites within a gene can give rise to

numerous different transcripts. When we use the term gene, we refer to ALL the tran-

scribed sequences within that gene. This includes 5’ and 3’ untranslated regions (UTRs),

exons and introns, from transcription start site to the poly-adenylation sites (see Figure

4.5). Hence when we refer to the genomic sequence of a gene, the sequence includes all

of these features. When we use the terms transcript coordinates we refer to chromosomal

coordinates for individual RNA transcripts encoded within a gene.

11

4.3. ALIGNING READS TO THE GENOMIC REFERENCE
SEQUENCE 12

4.3 Aligning reads to the genomic reference sequence

The pyCRAC package has specifically been designed to tackle reads that have been

aligned to genomic reference sequences. Hence, pyCRAC will NOT work on data mapped

to cDNA sequences. This may be included in later versions if there is sufficient demand

for it.

To make the CRAC cDNA libraries, the cross-linked protein has to be removed by pro-

teinase K treatment. This presumably does not remove UV cross-linked amino-acid(s).

Others and we have noticed that during cDNA synthesis the reverse transcriptase can

jump over the cross-linked amino acid, frequently introducing deletions in the cDNA

at specific positions. In many cases these deletions appear to highlight the UV cross-

linking site(s) and identification of these sites is an important part of the data analy-

ses. Because is not uncommon to find reads containing gaps of several nucleotides it

is important to use a program that can accurately align reads with deletions to the

reference sequence. A list of sequence alignment tools can be found on the following web-

site: http://en.wikipedia.org/wiki/List_of_sequence_alignment_software. We

frequently use the Novoalign gapped reference sequence aligner (www.novocraft.com),

because it can accurately align reads with a high number of nucleotide mismatches.

Another advantage of Novoalign is that it has the option to remove trailing adapter

sequences. Read lengths in CRAC high-throughput data are in the range of 15 to

100nt, and therefore adapter sequences quite often contaminate the data sets. Adapter

trimming can also be performed using the fastx toolkit from the Hannon lab (http:

//hannonlab.cshl.edu/fastx_toolkit/), which is an excellent set of tools for post pro-

cessing of FASTQ data. We would also recommend trying flexbar (http://sourceforge.

net/p/flexbar/wiki/Manual/).The pyCRAC tools fully support the native Novoalign

output format. The pyCRAC tools can also process datasets in the BAM or SAM format

(http://samtools.sourceforge.net/SAM1.pdf), which is supported by many popular

sequence aligners and is now a standard in the field.

Parsing BAM and SAM was, in part, implemented using the pysam module, a Python

wrapper for the csamtools interface (http://code.google.com/p/pysam/). The follow-

ing command line shows some of the frequently used flags with Novoalign that we use to

map reads from CRAC experiments to the Saccharomyces cerevisiae genome:

1 novoalign -f solexadata.gz -d yeast.novoindex -r Random > solexadata.novo

In this example we used Novoalign version 2.0.5 and this command produces an output

file in the native Novoalign format. Novoalign can handle gzip compressed files, which is

pyCRAC 1.3.2 12

http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
www.novocraft.com
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://sourceforge.net/p/flexbar/wiki/Manual/
http://sourceforge.net/p/flexbar/wiki/Manual/
http://samtools.sourceforge.net/SAM1.pdf
http://code.google.com/p/pysam/

4.4. SUPPORTED FILE FORMATS 13

�· �·
�· �·

plus strand
minus strand

Raw Solexa data

Correct deletions

sta
rt

ca
lcu

lat
ed

 en
d

ac
tua

l e
nd

read mapped
to plus strand

Raw Solexa data

Correct deletions

sta
rt

ca
lcu

lat
ed

 en
d

ac
tua

l e
nd

gene A
gene B

read mapped
to minus strand

Figure 4.1: Schematic representation of how pyCRAC tools calculate chromosomal mapping
positions using mutation information stored in novo or SAM/BAM files

a very useful feature. The novoindex file contains the indexed yeast genome. Reads that

are mapped to multiple chromosomal positions will be randomly distributed over each

position (-r Random flag). Because the pyCRAC Novoalign parser does not properly

process soft-clipped reads, we would recommend not using the -o option. More detailed

documentation on Novoalign and the Novoalign native output format can be found on

the Novocraft website (www.novocraft.com).

1 novoalign -f solexadata.gz -d yeast.novoindex -r Random -o SAM > solexadata.sam

If you want Novoalign to output a SAM formatted file:

1 novoalign -f solexadata.gz -d yeast.novoindex -r Random -o SAM > solexadata.sam &

Note that in these examples we are only using a few default options and usually some

tweaking is required to get optimal results.

4.4 Supported file formats

4.4.1 Input files must be tab-delimited

All of the input files, including the GTF feature files and the files containing the genomic

sequences should be in tab-delimited format. If you would open any of the input files in a

spreadsheet program, words or characters that are separated by tabs should be in separate

columns, whereas characters separated by spaces should end up in a single column. Hence

each tab separator essentially indicates the start of a new column. Do not edit these files

pyCRAC 1.3.2 13

4.4. SUPPORTED FILE FORMATS 14

in spreadsheet programs as this can modify the file and cause problems with file parsing.

4.4.2 Processing and manipulating GTF feature files

The pyCRAC tools make heavy use of the Gene Transfer Format (GTF), a standardised

tab-delimited text format describing genes and other chromosomal features. For more

detailed information about GTF, see http://mblab.wustl.edu/GTF22.html, Table 4.1

and the explanation in Table 4.2. To process GTF feature files pyCRAC tools use the

GTF2 parser, which is located in the pyCRAC installation folder. GTF2 reads the GTF

file line by line and stores information into memory in a database-like format. For the

smaller genomes, (i.e. bacterial and yeast), parsing only takes a few seconds, whereas the

human GTF file takes about a minute and requires around 1GB of memory

Table 4.1: Example entries from a Saccharomyces cerevisiae GTF feature file. Each
column indicates a separate field in the gtf file

seqname source feature start end score strand frame attributes
chrI protein coding exon 83335 84474 . - . gene id ”YAL032C”; transcript name

”YAL032C”; exon number ”1”;
gene name ”PRP45”; transcript name
”PRP45”;

chrI protein coding CDS 83338 84474 . - 0 gene id ”YAL032C”; transcript name
”YAL032C”; exon number ”1”;
gene name ”PRP45”; transcript name
”PRP45”; protein id ”YAL032C”;

chrI protein coding start codon 84472 84474 . - 0 gene id ”YAL032C”; transcript name
”YAL032C”; exon number ”1”;
gene name ”PRP45”; transcript name
”PRP45”;

chrI protein coding stop codon 83335 83337 . - 0 gene id ”YAL032C”; transcript name
”YAL032C”; exon number ”1”;
gene name ”PRP45”; transcript name
”PRP45”;

4.4.3 Support for other tabular annotation formats

The pyReadAligner.py and pyPileup.py tools also support a simpler tab-delimited text

format that offers the users more flexibility. This is particularly useful if you want to

quickly generate a multiple sequence alignment or pileup of a region that is not anno-

tated. A line from such a tab-delimited input file is shown below:

RDN37-1 chrXII 451576 458433 -

Column 1 indicates the name of the feature, in this case a gene name, column 2 indicates

the chromosome on which the feature is located, columns 3 and 4 indicate the start and

end position of the feature, respectively and column five indicates on which strand the

feature is located. If you want to generate a similar file, make sure that you do this in a

simple text editor or in the terminal and that the entries are separated with tabs.

pyCRAC 1.3.2 14

http://mblab.wustl.edu/GTF22.html

4.4. SUPPORTED FILE FORMATS 15

Table 4.2: Meaning of each individual column in GTF files

Column Name Explanation
1 < seqname > Indicates the name of the chromosome/sequence on

which the feature is located.
2 < source > Indicates where the annotations came from. Can be

an experiment the name of a program or database.
Other source names are ”ncRNA”, ”snRNA” and
”rRNA”. PyCRAC tools refer to the entries in this
column as ”annotations”.

3 < feature > ”CDS” indicates coding sequence coordinates. Exon
coordinates include stop codons and often also UTR
coordinates. ”CDS”, ”start codon”, ”stop codon”
are essential features. ”exon”, ”5UTR” and ”3UTR”
features are optional. Most GTF files from EN-
SEMBL do not contain UTR information. Exons
are broadly defined as ANY transcribed exon and
exon boundaries can include transcription start sites
and splice sites. Hence UTRs can also be included
in exon coordinates.

4 < start > Indicates the start position of the feature on the chro-
mosome (1-based).

5 < end > Indicates the end position of the feature on the chro-
mosome.

6 < score > At this position you would normally find a score in-
dicating the degree of confidence in the presence of
the feature at the indicated positions. The GTF2
parser ignores this column.

7 < frame > Indicates the frame in which the first nucleotide of a
codon is present. ”0” means that the first nucleotide
of the sequence is the first nucleotide of the codon.

8 < strand > Indicates the strand; ”+”is the top strand, whereas
”-” indicates the bottom strand.

9 < attributes > Indicates the attributes of the feature, separated
by a space. The ”gene name” attribute is essen-
tial and should be included in every file. The GTF2
parser requires both the ”gene name” and the ”tran-
script name”.

4.4.4 Chromosomal sequence files also need to be in tab-delimited

format

PyCRAC tools load all the genomic annotations and the entire genomic sequence in

memory. We found that this was the fastest way to analyse large datasets. When using

the human genome, this requires several GB of RAM. Make sure that you have at least

8GB of RAM when doing analyses with human sequences or genomes of similar size.

The file containing genomic sequences also need to be in tab-delimited format. In this

format genomic sequences appear to be loaded much faster into memory compared to

the standard fasta format. Genomic sequences in fasta format can be obtained from

UCSC (http://genome.ucsc.edu/) or ENSEMBL (http://www.ensembl.org/info/

pyCRAC 1.3.2 15

http://genome.ucsc.edu/
http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html

4.5. DATA PROCESSING FUNDAMENTALS 16

data/ftp/index.html). To convert the fasta file to the tab-delimited format you can

use the pyFasta2tab.py script supplied with the pyCRAC package (see section 6.1.2) or

FASTA-to-Tabular converter in Galaxy.

IMPORTANT! Make sure that the genomic sequence file has same version number

as your GTF feature file and that the chromosome names in the .tab file are identical

to the chromosome names in the GTF file!!! Otherwise the programs will not find any

overlap between reads and genomic features. If the .tab and GTF files were obtained

from the same source, then this is usually not a problem.

4.4.5 Novoalign and BAM/SAM formats

Novoalign native and SAM are tab-delimited text formats used for storing read mapping

data (see http://samtools.sourceforge.net/SAM1.pdf and www.novocraft.com for

more details). BAM files are compressed SAM files. The pyCRAC tools fully support

these formats and use two Python modules called Novoalign.py and SAM.py to process

them.

4.4.6 Handling paired-end data sets

Both single-end (the cDNA was sequenced from 5’ end) and paired-end (the cDNA was

sequenced from both ends) Novoalign and BAM/SAM data can be processed with py-

CRAC. PyCRAC calculates start and end positions of cDNAs using mapping coordinates

from paired reads or a single read . NOTE the tools do not take into consideration exon

junctions. By default, paired reads that map to the same chromosome more than a 1000

nucleotides apart from each other will be ignored, however, this setting can be changed

using the - -distance flag.

4.5 Data processing fundamentals

4.5.1 Common options

PyCRAC programs contain many common options; several file input options and tool-

specific options. Table 4.3 summarises (command line) options used by many pyCRAC

tools and provides a brief description of what they do. More details for some of these

options will be provided below and in Chapter 5

pyCRAC 1.3.2 16

http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html
http://samtools.sourceforge.net/SAM1.pdf
www.novocraft.com

4.5. DATA PROCESSING FUNDAMENTALS 17

Table 4.3: Overview and description of frequently used pyCRAC options. The ”com-
mand” column indicates the string that needs to be added to the command line in order
to use the option.

Utility Command Description

Set the number of mapped

reads you want to have

analysed

-m

- -max

If you add -m 1000 to the command line only

a 1000 mapped reads will be analysed

Filter by alignment/map-

ping quality

- -alignmentquality Novoalign format: The alignment quality is

calculated as 10log10(1 P(Ai— R, G)), where

P(Ai—R, G) is the probability of the align-

ment given the read and the genome.SAM for-

mat: MAPQ: MAPping Quality, phred-scaled

posterior probability that the mapping posi-

tion of this read is incorrect).

Filter by alignment score

(Novoalign)

- -mappingquality

- -alignmentscore

The alignment score is 10log10(P(R—Ai))

where P(R — Ai) is the probability of the read

sequence given the alignment location i.

5’ and 3’ UTR coordinates -r

- -range

Including -r or - -range flag followed by an in-

teger the user can manually set the length of

UTR sequences.

Removing possible PCR

duplicates

- -blocks All the pyCRAC tools have the option to re-

move read blocks, defined as reads with iden-

tical sequences that have the same genomic

coordinates. Essentially the same as collaps-

ing the data but provides some more flexibility

when it comes to mutations.

Remove reads with multi-

ple alignment locations

- -unique To select only reads that map to a single ge-

nomic location.

Filter by read length -l

- -length

Shorter reads often provide a higher resolu-

tion of the RNA binding sites. This option

allows you to remove reads longer than the

input value.

Minimal overlap between

read and feature

- -overlap Overlap is defined as the number of nu-

cleotides the read sequence needs to overlap

with a feature or gene in the genome. Default

is 1 nucleotide.

Filter mutations in reads - -mutations Mutations are frequently highlighted by the

presence of deletions and, occasionally, sub-

stitutions. Use this option to filter the reads

for a specific type of mutations. Deletions for

CRAC and T-C mutations for PAR-CLIP.

Continued on next page

pyCRAC 1.3.2 17

4.5. DATA PROCESSING FUNDAMENTALS 18

GGTGGAGAGAGCCTAGGTGATCGTCAGAT

GGTGGAGAGAG--cCTAGGTGATCGTCAGAT

GGTGGAGAGAGtcgCTAGGTGATCGTCAGAT

Raw Solexa data

Highlight mutations

Correct mutations

Figure 4.2: Sequence correction and highlighting in pyCRAC

Table 4.3 – Continued from previous page

Utility Command Description

Genomic or coding refer-

ence sequence?

-s

- -sequence

To specify if you want introns included in the

pileups or multiple sequence alignments. Use-

ful when studying RNA binding proteins that

do not interact with introns.

Store the reads the pro-

grams discard in a text file

- -discarded Prints the reads that were filtered out by the

programs into a separate text file, the name of

which should be supplied after the - -discarded

option. Useful for quality control purposes.

Compress all output file

into a zip file

- -zip You need to supply a file name after the - -zip

option with a .zip extension.

4.5.2 Read sequence correction

The Novoalign and BAM/SAM formats define the start position as the leftmost mapping

of the first matching base of the read sequence on a chromosome or reference sequence.

The pyCRAC tools calculate the end of the chromosomal mapping position of the read

by adding the length of the read to the start position coordinate. However, CRAC

data very frequently have deletions and therefore to obtain the correct end mapping

position the number of nucleotides that are deleted must be included when calculating

the mapping positions of the read (see Figure 4.1). The Novoalign and BAM/SAM format

report locations of mismatches in mapped reads and pyCRAC tools automatically use this

information to correct the read length and the read sequence. When using pyReadAligner

to generate multiple sequence alignments, dashes are inserted at positions were deletions

were found (see Figure 4.2) and substitutions are always highlighted as lowercase letters.

RNA binding motifs extracted from CRAC/CLIP data frequently contain mutations.

Therefore, it is very important to correct the sequence of reads with deletions when

searching for enriched motifs in the data. The pyCRAC motif search program pyMotif.py

does this automatically

pyCRAC 1.3.2 18

4.5. DATA PROCESSING FUNDAMENTALS 19

Figure 4.3: Calculating overlap between read mapping positions and genomic features. An
example showing the effects of changing the overlap setting in pyCRAC tools.

gene A
gene B

�·
�·
�·

�·
plus strand
minus strand

read (50nt)

Overlap setting:(nt) gene A gene B
1 sense anti-sense
25 - anti-sense
50 - -

4.5.3 Calculating overlap between reads and genomic features

CLIP/CRAC cDNA library preparation protocols generate directional libraries and there-

fore sequencing data will contain strand information. PyCRAC was designed to specif-

ically tackle directional libraries and reports whether reads are sense and anti-sense to

genomic features (Figure 4.3). By default, a read only has to overlap one nucleotide with

a feature to be considered a hit. This setting can be changed in many pyCRAC tools by

using the - -overlap flag. Unless specified, feature chromosomal coordinates are calculated

from exon coordinates (Figure 4.5). For an example of how the overlap function works,

see Figure 4.3 and the table below it. In this example we have a 50 nucleotide read that

was mapped to the top strand of a chromosome. This read partly overlaps with gene A

on the plus strand and gene B on the bottom strand. When using the default settings,

pyCRAC will include this read as a sense hit to gene A and an anti-sense hit to gene B.

When overlap is set to 25 nucleotides, pyCRAC tools will only report an anti-sense hit

to gene B. If overlap is set to 50 nucleotides (i.e. 100 percent overlap is required), the

read will not be considered a hit to either gene.

PyReadCounters, pyPileup and pyReadAligner also have an - -ignorestrand flag that

allow users to analyse datasets that do not contain strand information, such as ChIP-seq

data.

4.5.4 Alignment qualities and alignment scores

A read can be aligned to single or multiple locations in the genome and this information

is used to calculate an alignment quality (Novoalign) or mapping quality (MAPQ in

the SAM format). Dealing with alignment qualities can get quite complicated as the

actual value depends on the algorithm used by the sequence aligner. The pyCRAC tools

allow you to remove reads with poor alignment quality/mapping quality by setting a

threshold. Reads with qualities lower than the threshold will be ignored. By default,

pyCRAC tools do not take alignment/mapping qualities into consideration and we would

pyCRAC 1.3.2 19

4.5. DATA PROCESSING FUNDAMENTALS 20

recommend using the default settings if you just started using pyCRAC to analyse a

dataset. More detailed information about alignment and mapping quality calculations

can be found in the Novoalign and SAM documentation (www.novocraft.com, http://

samtools.sourceforge.net/SAM1.pdf). Novoalign also uses an alignment score, which

according to the Novoalign documentation is defined as: 10log10(P(R—Ai)) where P(R

— Ai) is the probability of the read sequence given the alignment location i. A threshold of

75 would allow for alignment of reads with two mismatches at high quality base positions

plus one or two mismatches at low quality positions or to ambiguous characters in the

reference sequence.

PyCRAC tools also allow you to set a threshold for the alignment scores. Reads with

alignment scores lower than the threshold will be ignored.

4.5.5 How to deal with untranslated (UTRs) and flanking re-

gions and how manually set their coordinates

The GTF ”exon” feature is broadly defined as ”all transcribed regions” and exon bound-

aries can include transcription start sites, splice sites and poly-adenylation sites (see

Figure 4.5). Therefore, exon features can also contain 5’ and 3’ untranslated regions

(UTRs). ”CDS” features refer to translated nucleotide sequences, or coding sequences,

which includes the start codon. The GTF2 parser automatically extracts any UTR in-

formation from GTF files by comparing ”exon” and ”CDS” coordinates, as outlined in

Figure 4.5 and includes this information when looking for overlap between reads and ge-

nomic features. Many GTF files, however, do not contain information about transcription

start sites and/or poly-adenylation sites. Coordinates for untranslated regions are avail-

able from BioMart (ENSEMBL) and/or the UCSC Table browser. The Saccharomyces

cerevisiae database (SGD) also stores GFF files containing UTR coordinates. These,

however, need to be converted to the GTF format in order to work with pyCRAC.

The simplest way to include new UTR coordinates in pyCRAC data analyses is to add

them to the GTF feature files, either as new entries flanking exon features or by indicat-

ing them as separate UTR features. When including UTR coordinates as exon features,

pyCRAC tools will automatically assume these are UTR sequences if accurate CDS co-

ordinates are also present. These will automatically be included in the data analyses.

NOTE: if no CDS coordinates exist for the gene of interest then no UTR coordinates

will be calculated. In these cases it is best to add the UTRs as separate features. An

example of how to add UTR coordinates to GTF annotation files is shown in Table 4.4.

In the command line example shown below the pyReadCounters.py program looks for

overlap between yeast genomic genes/transcript coordinates from the GTF file and read

pyCRAC 1.3.2 20

www.novocraft.com
http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/SAM1.pdf

4.5. DATA PROCESSING FUNDAMENTALS 21

Figure 4.4: Example showing how to add UTR coordinates to GTF annotation files.
UTR coordinates are indicated as exons or UTRs

chrXVI protein_coding CDS 802355 804076 . + 0 gene_id "YPR137W"; gene_name "YPR137W";

chrXVI protein_coding exon 802355 804076 . + 0 gene_id "YPR137W"; gene_name "YPR137W";

chrXVI protein_coding stop_codon 804074 804076 . + 0 gene_id "YPR137W"; gene_name "YPR137W";

chrXVI protein_coding exon 802310 802354 . + 0 gene_id "YPR137W"; gene_name "YPR137W";

chrXVI protein_coding exon 804074 804254 . + 0 gene_id "YPR137W"; gene_name "YPR137W";

OR:

chrXVI protein_coding 5UTR 802310 802354 . + 0 gene_id "YPR137W"; gene_name "YPR137W";

chrXVI protein_coding 3UTR 804074 804252 . + 0 gene_id "YPR137W"; gene_name "YPR137W";

coordinates in the SolexaData.sam file. The program generates several output files (de-

tailed in Chapter 5) including a table containing a list of genes and a hittable for each

genomic feature in the GTF file. Using the -r or - -range flag it is possible add sequences

to the 5’ and 3’ ends of genes to determine if proteins interact with flanking regions.

For protein coding genes this option can be used to manually set a fixed length for both

5’ and 3’ UTR coordinates for all genes/transcripts but also to add flanking regions to

non-coding RNAs (see Figure 4.5).

1 pyReadCounters.py -f SolexaData.sam --file_type=sam --gtf=yeast.gtf -r 300

Figure 4.5: The GTF2 parser calculates 5 and 3 UTR coordinates by comparing start
and end positions of ”exon” and ”CDS” features. NOTE that the stop codon is not
included in CDS features. UTR coordinates can also be included as separate features,
indicated as 5UTR and 3UTR, respectively. TSS indicates the transcriptional start site,
whereas pA indicates the poly-adenylation site. Red arrows indicate 300 nucleotide long
5 and 3 UTR sequences.

exon intron �·875�·875 exon
AAAAAAAAAA

¶H[RQ·

¶VWDUWBFRGRQ· ¶VWRSBFRGRQ·

S$

¶&'6·
¶�875· ¶�875·

766 Chromosome coordinates

¶H[RQ·
¶&'6·

 manually setting UTR length (-r 300):

300 nt 300 nt

pyCRAC 1.3.2 21

4.5. DATA PROCESSING FUNDAMENTALS 22

Table 4.4: Explanation of the meaning of the terms reads, cDNAs, blocks and clusters

Term Explanation
reads Reads are ALL the sequences in a FASTQ or Novoalign/BAM/SAM data file.
blocks Reads with identical nucleotide sequences and chromosomal mapping positions.
cDNAs Indicate unique sequences. A library can contain 50000 unique cDNA sequences but

hundreds of reads can have the same cDNA sequence.
clusters Assemblies of at least two overlapping cDNA sequences. Blocks are treated as a single

cDNA during cluster analysis.

4.5.6 Reads, cDNAs, blocks, clusters and multiple alignment

locations

Because UV cross-linking is very inefficient, we often have very little RNA to work with

when generating cDNA libraries. Hence, CRAC cDNA libraries are frequently of low com-

plexity, sometimes containing less than fifty-thousand unique cDNA sequences. There-

fore, it is very likely that cDNAs are amplified many times during the PCR step and some

sequences could be preferentially amplified. This bias gives a false positive impression of

the actual number of hits for a particular feature or gene. When visualising CRAC data

in genome browsers, these potential PCR duplicates often appear as large ”blocks” or

”read stacks” (see Figure 4.6 and Table 4.4). We now routinely incorporate 3-6 random

nucleotides in adapter barcode sequences to assess the degree of PCR duplication. Bar-

coded raw data is first demultiplexed using pyBarcodeFilter.py and then collapsed using

pyFastqDuplicateRemover.py. This is described in more detail in section 5.1

The - -blocks flag in pyCRAC can also be used to collapse your data, however, this func-

tion works on Novo, BAM and SAM files. The - -blocks filter uses both read chromosomal

mapping positions and mutations to determine if a read is a duplicate: reads that have

the same chromosomal mapping coordinates but have deletions/substitutions at different

positions will NOT be considered PCR duplicates.

We have also included a tool that generates clusters from read data (pyClusterReads).

Clusters are defined as an assembly of at least two overlapping reads and can provide

an indication of the number of RNA binding sites present in an RNA. For more details

about clusters, see section 5.3.1.

To use the blocks option simply add - -blocks to the command line:

1 pyReadCounters.py -f SolexaData.sam --file_type=sam --gtf=yeast.gtf --blocks

pyCRAC 1.3.2 22

4.5. DATA PROCESSING FUNDAMENTALS 23

Figure 4.6: Examples showing removal of putative PCR duplicates (blocks) and clus-
ter generation. Shown is a schematic representation of a gene (YFG1) containing two
exons and one intron. Reads and clusters are indicated as thick black lines. Muta-
tions are indicated as asterisks. (A) All reads that mapped to YFG1 are displayed. (B)
PCR duplicates or ”blocks” are condensed into one cDNA sequence using pyFastqDupli-
cateRemover. Note that positions of mutations are considered when removing duplicates,
however, reads with the same coordinates are still counted as a single cDNA during clus-
ter formation. (C) Clusters generated from at least two overlapping cDNA sequences
using pyClusterReads. This step removes the reads forming the large block in the second
exon of the gene. (D) Clusters generated from at least five unique cDNAs. This removes
the cDNA sequences mapped to the 5’ region of the gene.

Generate clusters from at least 5 overlapping cDNAs:D

Remove possible PCR duplicates:
cDNAs

B

* *
*
*

Generate clusters:
clusterclusters

C

* ***

Include all reads:

blocks

exon
intron

exon

A

*
**
*

*

cluster

pyCRAC 1.3.2 23

4.5. DATA PROCESSING FUNDAMENTALS 24

4.5.7 Using genomic and coding sequences as reference

The pyCRAC package contains three tools, pyPileup, pyReadAligner and pyBinCollector,

that allow you to look at distribution of reads on genomic features. If you are performing

CLIP/CRAC on a protein that does not interact with introns then it is sometimes useful

to be able to exclude intron sequences from data analyses, particularly when analysing

sequencing data from experiments performed in higher eukaryotes. Human genes, for

example, generally have relatively short exons and very long introns. When -s coding

or - -sequence=coding is included in the command line, pileups or alignments will be

generated using only coding sequences (CDS). For more details about this option, see the

sections in Chapter 5 discussing pyPileup.py, pyReadAligner.py and pyBinCollector.

4.5.8 Filtering the data for reads with mutations

Because deletions in pyCRAC data frequently highlight the protein cross-linking site

they play very important role in the data analyses. Many pyCRAC tools have an option

called - -mutations, which allows you to filter the mutations present in reads or clus-

ters (see section 5.3.1). By default the program keeps track of all the mutations but

it can be instructed to only consider deletions (- -mutations=delsonly), reads that have

substitutions (- -mutations=subsonly). Finally, one can also select for specific nucleotide

substitutions. Cross-linking sites in PAR-CLIP data are often indicated by T-C conver-

sions. By using the - -mutations=TC only T-C mutations are stored. This option can be

used in combination with almost any other option.

Usage example: We want pyReadCounters.py only to analyse reads mapped to a sin-

gle genomic locations and only deletions are reported:

1 pyReadCounters.py -f SolexaData.sam --file_type=sam --gtf=yeast.gtf --unique

--mutations=delsonly

4.5.9 Additional common options

The -m or - -max options allow you to specify how many mapped reads you want to have

analysed. The programs automatically ignore reads that failed quality control (QC) or

unmapped (NM). This option is useful for normalising your data to compare different

datasets. The -l or - -length flags allow you to set a maximum read length threshold. For

example, when you add -l 20 to the command line then reads longer than 20 nucleotides

will be ignored. Shorter reads give rise to narrower peaks and therefore higher-resolution

pyCRAC 1.3.2 24

4.5. DATA PROCESSING FUNDAMENTALS 25

RNA binding sites. To set the maximum number of base-pairs allowed between two

non-overlapping paired reads we included the -d or - -distance flag, which can only be

used when analysing paired-end data. The default setting is 1000 nucleotides. At this

setting paired reads mapped to the same chromosome but separated by more than 1000

nucleotides apart will be discarded. The - -discarded option prints the discarded reads to

an output file. An output file name needs to be entered after this flag. This will allow

you to determine how stringent your filtering settings are.

4.5.10 File handling options

The most common file handling flags are -f or - -input file for loading read mapping

data (Novoalign or BAM/SAM format (for pyReadCounters and pyPileup tools)), the

- -gtf flag for GTF feature files and the - -tab flag for handling tab-delimited genomic

sequence files. Chapter 5 also introduces the -g and - -chr flags for indicating gene lists and

other tab-delimited files. NOTE, by default, all pyCRAC tools use the Saccharomyces

cerevisiae GTF feature and genomic sequence tab files in the /usr/local/pyCRAC/db

folder. Hence, if the - -gtf and/or - -tab flags are not included in the command line, the

programs assumed the read sequences are derived from yeast.

pyCRAC 1.3.2 25

Chapter 5

The pyCRAC tools

This Chapter describes the functionality of the main pyCRAC tools. To better convey

the purpose of the tool we in some cases included several example figures. We also discuss

frequently used option and provide numerous command line examples.

5.1 pyBarcodeFilter

The throughput of sequencing applications has increased tremendously over the past

few years. At the time of writing, a single lane on an Illumina HiSeq machine routinely

generated up to 180 million single-end reads. For most CRAC experiments involving small

genomes a few million reads is often sufficient. We multiplex our samples using barcoded

5’ adapters that contain random nucleotides. This allows a better assessment of number

of PCR duplicates. There are numerous programs available that can demultiplex samples,

however, to our knowledge there isn’t a publicly available tool that can tackle random

barcodes. PyBarcodeFilter.py tool can process barcodes containing random nucleotides

and also barcodes of different lengths. Other unique features are that the tool can process

paired end data and gzip-compressed input files. It can also compress output files. The

tool looks for barcodes in 5’ ends of reads and generates separate data files for each

barcode in a minimal FASTQ format. Once the tool identifies a barcode, the barcode

sequence and corresponding quality characters are removed from the raw data and placed

in a separate output file. Reads without recognisable barcodes are also reported. The

program also generates output files containing some statistics about barcodes and random

nucleotides, when present. Recently I made a significant update to pyBarcodeFilter and

now it can also handle barcodes with random nucleotides at multiple positions within the

barcodes sequence.

When pyBarcodeFilter encounters a barcode with random nucleotide sequences it will

26

5.1. PYBARCODEFILTER 27

Figure 5.1: Example of a header after splitting randomly-barcoded data with pyBar-
codeFilter. If the barcode sequence file indicates barcodes with random nucleotides, the
tool will remove the barcode and attach the random barcode sequence (red) to the header
with two hashes (blue).

FCC0TU2ACXX:4:1101:1968:2135#ACAGTGAT1##GTTCTC

Table 5.1: Example of a barcode text file

NNNCGCTTAGCNN mutant2
NNNGCGCAGCNN mutant1
NNNATTAGNN control
NNNTAAGCNN myfavprotein

store the random nucleotide sequence in the header of the read, as shown in figure ??.

NOTE After demultiplexing the data with pyBarcodeFilter we generally collapse the

data to remove any potential PCR duplicates. This can be done using the fastx collapser

tool from the fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/); however

we have also included additional scripts, including pyFastqDuplicateRemover, that can

deal with random barcodes. This is discussed in detail in section 6.2.1.

5.1.1 Usage and option summary

To get the help menu for pyBarcodeFilter type pyBarcodeFilter.py -h in the terminal.

This tool requires FASTA or FASTQ input files containing the raw data and a text file

containing barcode information. To process paired end data, use -f and the -r flags to

indicate the path to the forward and reverse sequencing reactions, respectively. The

barcodes file should two columns separated by a tab (see Table 5.1). The first column

should contain the barcode nucleotide sequences. The second column should contain an

identifier, for example, the name of the barcode or the name of the experiment. The ’N’

in the barcode sequence indicates a random nucleotide. Make sure to use a simple text

editor like TextEdit (MacOS X), gedit (Linux/Unix) or use a text editor in the terminal.

The program is case sensitive: all the nucleotide sequences should be upper case. You

can freely combine different barcodes but if you are mixing samples containing random

nucleotide barcodes and normal barcodes, make sure to place the regular barcode se-

quence below the sequence with random nucleotides and make sure the shortest sequence

is ALWAYS at the bottom in the column, as shown in Table 5.1.

NOTE! pyBarcodeFilter always expects the random barcode sequence to be at the 5’ end

and or 3’ end of the barcode sequence and it does not allow mixing of adapter sequences

pyCRAC 1.3.2 27

http: //hannonlab.cshl.edu/fastx_toolkit/

5.1. PYBARCODEFILTER 28

with random barcodes of different lengths! In this case it is better to do multiple sequen-

tial demultiplexing runs. For example: in the past only the following would be accepted:

NNNATGC

The new program can now deal with three types of in-read barcodes:

NNNATGC

ATGCNNN

NNNNATGCNN

NOTE! It is essential that you do NOT mix these different type of in-read barcodes

and the stretches of random nucleotides should always be of the same length!

Accepted:

NNNATGCNN sample1

NNNTGACNN sample2

NNNAGATNN sample3

A barcode file with the following sequence will produce errors as they are mixed:

NNNATGCNN sample1

NTGCANNN sample2

TGCANNN sample3

The -m or - -mismatches option sets the number of allowed mismatches in a barcode. The

maximum is one mismatch. We use RNA barcode sequences in our linkers and sometimes

these are trimmed at the 3 ends by one or two nucleotides. Setting the number of allowed

mismatches to 1 may reveal more barcoded sequences. Use with caution!! When using

short barcodes (as shown in Table 5.1) we would recommend using default settings for

allowed number of mismatches (0).

Usage example for processing paired-end data:

1 pyBarcodeFilter.py -f data_1.fastq -r data_2.fastq b barcodes.txt

pyBarcodeFilter can also process gzip compressed input files:

pyCRAC 1.3.2 28

5.2. PYREADCOUNTERS 29

1 pyBarcodeFilter.py --file_type=fasta.gz -f data_1.fasta.gz -b barcodes.txt

And compress output files using gzip (-9 compression):

1 pyBarcodeFilter.py --file_type=fasta.gz -f data_1.fasta.gz -b barcodes.txt --gzip

5.1.2 Output files

Besides generating separate FASTQ or FASTA files for barcoded reads it also produces

text files containing useful barcode and random nucleotide statistics.

5.2 pyReadCounters

After aligning the reads to the reference genome the first thing we routinely do is generate

hit tables describing the number of reads that mapped to genes or transcripts and to which

features they were mapped (UTRs, introns, exons, CDS, etc). We also want to visualise

our data in genome browsers to look at the hit distribution on chromosomes. How many

unique cDNAs do you really have in the data? How many reads map anti-sense to

genes? This basically summarises what pyReadCounters.py does. The program takes the

Novoalign or BAM/SAM file and asks which reads overlap with genomic features from a

GTF file.

5.2.1 Usage and option summary

To access the pyReadCounters help menu, type pyReadCounters.py -h in the terminal.

This tool supports a large number of the common options. These are discussed in detail

in Chapter 4. The file input and pyReadCounters specific options will be discussed below.

5.2.2 Default behaviour

CRAC data are usually not very complex, particularly when the bait protein has only

few RNA binding sites or RNA substrates. Because of this, pyCRAC tools quite often

first collapse the data by counting the reads that contain the exact same cDNA sequence.

From this, the smallest possible number of unique cDNA sequences is determined, and

only cDNA mapping coordinates are compared to genomic features in the GTF feature

files. If a cDNA overlaps with a feature then the number of hits for that feature is incre-

mented by the number of reads with the same mapping position. This makes downstream

pyCRAC 1.3.2 29

5.2. PYREADCOUNTERS 30

manipulations, such finding overlap with genomic features and sorting of the intervals,

very easy. However, the analysis of very large and complex datasets (10 GB or higher)

may require a lot of RAM memory.

By default pyReadCounters produces three output files: (1) A text file containing in-

formation about the complexity of the sequencing data, (2) a GTF file containing all the

genomic mapping positions of cDNA sequences and overlapping genomic features (both

sense and anti -sense) and (3) a hit table text file that shows for each genomic feature the

number of intervals that mapped sense or anti -sense. Counts for biotypes (such as pro-

tein coding, tRNA, snRNA, etc) are also included. PyReadCounters supports novoalign

native format, SAM/BAM and also GTF files. One can run pyReadCounters to generate

a read data GTF file, modify the GTF file and re-run pyReadCounters on the modified

GTF file to generate a new hit table. PyReadCounters also requires a GTF feature file.

Use the -f option to indicate the path to the Novoalign, BAM/SAM or GTF interval file.

Use the - -gtf option to indicate the path to the GTF feature file.

5.2.3 Command line examples

Running pyReadCounters using default settings:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf

In the last example all the required files were in the working directory. To use files located

in a different folder you need to include the entire file path. For example:

1 pyReadCounters.py -f /usr/SeqData/210211/SolexaData.novo

--gtf=/usr/local/pyCRAC/db/yeast.gtf

By default, all pyCRAC programs assume that the file containing the aligned reads is

in the native Novoalign format (i.e. - -file type=”novo”). To use a BAM or SAM file as

input file you need to specify the file type (case sensitive) in the command line:

1 pyReadCounters.py -f SolexaData.bam --file_type=sam --gtf=yeast.gtf

One can also use a pyReadCounters GTF file as input file, in case you need to re-count

the number of hits for features after modifying the GTF file. To use a GTF file as input

pyCRAC 1.3.2 30

5.2. PYREADCOUNTERS 31

file the - -file type needs to be used:

1 pyReadCounters.py -f modifiedreadcountersdata.gtf --file_type=gtf --gtf=yeast.gtf

Or if you want to count overlap between clusters and genomic features:

1 pyReadCounters.py -f myclusters.gtf --file_type=gtf --gtf=yeast.gtf

To remove reads with poor alignment quality and print out the discarded reads:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --align_quality=50

--discarded=discarded_reads.txt

Note that this only works with novo or SAM/BAM files.

Use the - -ignorestrand flag to analyse ChIPseq or RIPseq data:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf -c 1 --ignorestrand

To compress all the output files into a single zip archive use the - -zip flag followed by a

file name with a .zip extension:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --align_quality=50

--discarded=discarded_reads.txt --zip=outputs.zip

By default, pyReadCounters reports all substitutions and deletions in the GTF output

files it generates. However, if you are analysing PAR-CLIP data, you may only be inter-

ested in looking at T to C conversions. If you have CLIP or CRAC data, you may only

be interested in deletions. Using the –mutations flag you can instruct pyReadCounters

to report only specific mutations.

For example:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --mutations=delsonly

2 pyReadCounters.py -f MyPAR_ClipData.novo --gtf=yeast.gtf --mutations=TC

pyCRAC 1.3.2 31

5.2. PYREADCOUNTERS 32

Using the - -rpkm flag, pyReadCounters will also calculate for the reads that mapped sense

to each genomic feature the RPKM, which is defined as the number of reads per kilobase

transcript per million mapped reads. If you are analysing paired-end data, pyReadCoun-

ters will count fragments, not individual reads. Hence the reported RPKM values are

actually FPKMs (Fragments per kilobase transcript per million mapped reads)

For example:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --rpkm

The pyCRAC package has received a number of major updates since version 1.2. We

have introduced a large number of new features. By default pyReadCounters considers

genomic features that map both sense and antisense to reads/cDNAs. However, using

the - -sense and - -anti sense flags, users can now instruct pyReadCounters to consider

only sense or antisense overlapping features. For example:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --sense

2 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --anti_sense

This command instructs pyReadCounters to only count reads/cDNAs that overlap ’sense’

with genomic features.

Since version 1.2.2 you can also ask pyReadCounters to count reads mapped to introns,

exons, 5’UTRs or 3’UTRs using the -s or - -sequence flag. This only works with novo or

SAM-BAM files. For example:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --sense -s intron --rpkm

2 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf -s exon --rpkm

3 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf -s 5UTR --rpkm

Using the -a or - -annotation flag you can instruct pyReadCounters to only count specific

features such as protein coding or tRNAs.

For example:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --sense -s exon --unique

--rpkm -a protein_coding

pyCRAC 1.3.2 32

5.2. PYREADCOUNTERS 33

PyReadCounters will then only count reads or fragments that overlap with exons, they

must be unique cDNA sequences and map to protein coding genes. RPKM values will

also be calculated.

NOTE! This will only work if ”protein coding” is used in the ”source” column to anno-

tate protein coding genes (see Table 4.1).

Last but not least, a more complicated example that demonstrates the flexibility of

pyReadCounters: For example:

1 pyReadCounters.py -f SolexaData.novo --gtf=yeast.gtf --sense -s exon --unique

--rpkm -a protein_coding --mutations=delsonly --align_quality=50

This command generates output files in which unique cDNAs that map sense to exons

of protein coding genes are reported. RPKMs are included in the hit table and the GTF

output files will only show positions of deletions within the cDNAs.

5.2.4 Output files

The file statistics.txt file provides the cumulative number of reads for each unique cDNA

sequence in the data. When plotting the file statistics.txt data one would hope to see

more or less a straight line (see Figure 5.2), indicating a strong linear relationship be-

tween the cumulative number of reads and the number of unique cDNA sequences. In

this situation, most cDNA sequences are generally equally represented in the sequencing

data. Very high complexity cDNA libraries are characterised not only by a high num-

ber of unique cDNA sequences, but also each cDNA sequence is represented by only a

few reads. If the line resembles a logarithmic curve then this indicates that some cDNA

sequences are highly overrepresented. These libraries are frequently of low complexity.

The hit tables provide an overview of the genomic features and the number of reads that

were mapped to each feature. Because CRAC data contains strand information, pyRead-

Counters calculates the number of reads mapped sense and anti-sense to each feature.

Figure 5.3 shows a few lines from a pyReadCounters hittable file or RNASeq data.

To generate the hit table pyReadCounters searches for overlap between read/clusters and

genes in GTF annotation files, which include all transcribed sequences (see section 4.2

for more details). Because a single read can overlap with multiple features, the total

number of hits can exceed the total number of reads. The hit table also shows how many

pyCRAC 1.3.2 33

5.2. PYREADCOUNTERS 34

Figure 5.2: Example plots indicating high-and low-complexity datasets

cDNA number

c
u

m
u

la
ti
v
e

 n
u

m
b

e
r

o
f

re
a

d
s

c
u

m
u

la
ti
v
e

 n
u

m
b

e
r

o
f

re
a

d
s

cDNA number

High-complexity

library

Low-complexity

library

Figure 5.3: Example of a pyReadCounters hittable output file

generated by pyReadCounters version 1.1.0, Mon Apr 16 20:34:22 2012

/usr/local/bin/pyReadCounters.py -f RNAseq_data.novo -c 1 --unique

total number of reads 12534556

total number of paired reads 10947376

total number of single reads 483095

total number of mapped reads: 11430471

total number of overlapping genomic features 7019550

sense 5960669

anti-sense 1058881

feature sense_overlap anti-sense_overlap number of reads

protein_coding 3190701

YEF3 49930 3629 24221

PMA1 32621 2650 21776

COX1 24559 1037 15174

TFP1 21539 1689 13506

HSC82 21177 1458 12729

ADH1 20245 1467 11351

AI5_ALPHA 20022 918 13101

AI4 19390 886 12638

AI3 17823 798 11473

AI2 17590 790 11297

RPL10 16822 1113 8797

ENO2 16336 1125 8913

TEF1 15578 1333 5450

pyCRAC 1.3.2 34

5.2. PYREADCOUNTERS 35

Figure 5.4: Example of a pyReadCounters cDNAs GTF output file

##gff-version 2

generated by Counters version 1.2.0, Tue Jan 8 22:47:29 2013

pyReadCounters.py -f PAR_CLIP_unique.novo --mutations=TC -v

total number of reads: 2455251

total number of paired reads: 0

total number of single reads: 2455251

total number of mapped reads: 2455251

total number of overlapping genomic features: 5153943

sense: 2640600

anti-sense: 2513343

chrXIV reads exon 661572 661605 2 + .

gene_id "INT_0_6716,YNR016C"; gene_name "INT_0_6716,ACC1"; # 661596S;

chrXIV reads exon 661720 661738 1 + .

gene_id "INT_0_6716,YNR016C"; gene_name "INT_0_6716,ACC1"; # 661726S;

chrXIV reads exon 661839 661878 4 + .

gene_id "INT_0_6716,YNR016C"; gene_name "INT_0_6716,ACC1"; # 661875S;

were mapped to biotypes or annotations (column 2 in the GTF feature file), which are

indicated by two hashes in the hittable file. In this example, over three million reads

were mapped to protein coding genes. The first column shows the feature names, which

are either the ”gene name” or ”gene id” names from the GTF feature file. The second

and third columns show the number of sense and anti-sense reads, respectively, that over-

lapped with the gene. The fourth column shows the number of unique cDNA sequences

that overlap with the feature.

PyReadCounters also generates a GTF formatted output file containing all the extracted

sequence intervals and overlapping genomic features. Using the GTF format makes py-

CRAC compatible with many existing tools, such as BEDTools and genome browsers.

An example of a pyReadCounters GTF output file: The pyReadCounters GTF format

differs slightly from the GTF2 format specifications (see section 4.4.2) and is sorted by

chromosome, strand and then read start position. Column 2 in pyReadCounters file con-

tains ”reads” or ”cDNAs” if the - -blocks option was used. Column 6, or the ”score”

column in pyReadCounters GTF files indicates the number of reads mapped to chromo-

somal start and end positions shown in columns 4 and 5, respectively. The ”gene id”

and ”gene name” attributes in column 9 shows the GTF file features that overlap with

cDNA coordinates. Multiple overlapping features are shown as single ”gene id” and

”gene name” entries and are separated by commas. NOTE! These include sense AND

anti-sense overlapping features. A ”no matches” indicates that the cDNA did not overlap

with annotated features. Furthermore, pyReadCounters GTF files also indicate 0-based

chromosomal mapping positions of mutations in cDNAs which are indicated with a hash.

pyCRAC 1.3.2 35

5.3. PYCLUSTERREADS 36

For example, ”# 661596S” indicates that in the cDNA sequence there is a substitution

at chromosomal position 661596.

PyReadCounters also produces a GTF file for reads that overlap (sense) to annotated

UTR and intron coordinates. The results are printed in the intron and UTR overlap.gtf

file. IMPORTANT! 5’ and 3’ UTR sequences in GTF feature files can be included as

’exon’ features (see Table 4.4). In these cases reads that map to UTR regions will also

be counted as exon hits.

The pyReadCounters GTF output file can be used with the bedtools genomecoverageBed

or the pyGTF2bedGraph.py script to generate bedGraph files, a format that is frequently

used to display read coverage over chromosomes. For more details about making bed-

Graph files, please see section 6.3.4. We have also included a script in pyCRAC that

converts the GTF output into bed6 files (see section 6.3.3).

Sometimes you need to rerun pyReadCounters and you don’t want to wait until it has

generated all three output files. Since version 1.2 pyReadCounters now has three addi-

tional flags (- -hittable, - -stats and - -gtffile) that allows you to select which output file

you want the tool to generate:

1 pyReadCounters.py -f Solexadata.novo --gtf=yeast.gtf --stats

2 pyReadCounters.py -f Solexadata.novo --gtf=yeast.gtf --hittable

3 pyReadCounters.py -f Solexadata.novo --gtf=yeast.gtf --gtffile

5.3 pyClusterReads

5.3.1 Default behaviour

We routinely generate read clusters from the sequencing data. Clusters are defined as

assemblies of at least two overlapping cDNA sequences. NOTE! that the term cDNA se-

quences should not be confused with reads (see Figure 4.6 and Table 4.4). For example, a

block consists of a single cDNA sequence but can include hundreds of reads. To generate

clusters, pyClusterReads will look for read entries that overlap by at least one nucleotide.

One can manually set the maximum cluster length, the minimal required overlap between

a read and a cluster and the data can also be filtered for total number of overlapping

reads or the maximum ”height” of the cluster. Clustering your data essentially flattens

the data by assembling overlapping cDNAs into a single nucleotide sequence. Cluster-

pyCRAC 1.3.2 36

5.3. PYCLUSTERREADS 37

ing removes biases in sequence representation caused by PCR and abundantly expressed

sequences that have a high read coverage. It also removes noise or spikes generated by

isolated reads or read blocks (see Figure 4.6). Clusters assembled from a large number of

overlapping cDNAs likely represent bona fide RNA binding sites, and hence the number

of clusters overlapping a gene/transcript provides an indication of the number of RNA

binding sites. We also use cluster data to get an impression of the reproducibility of

CRAC experiments, by looking at overlap between clusters in different data sets. This

clustering feature is in many aspects similar to the mergeBed tool provided in BEDTools,

which combines overlapping features into a single feature. One of the advantages is that

it is a very flexible tool, with several cluster filtering steps that are very straightforward

to use.

NOTE! for pyClusterReads to work properly, the GTF input file has to be sorted by

chromosome, then by strand and then by start position. The pyReadCounters tool sorts

the read intervals for you so if you did not modify the file in any way it should work

without any problems. If you are not sure whether your file is correctly sorted, you can

run the following sort command line on your pyReadCounters GTF file:

1 sort -k1,1 -k7,7 -k4,4n reads.gtf > reads_sorted.gtf

We have also included a script that calculates False Discovery Rates for genomic regions

(pyCalculateFDRs.py, see section 5.7). This tool produces a GTF output file that pro-

vides a good starting point for generating clusters over significantly enriched regions.

5.3.2 Output files

This tool expects pyReadCounters GTF files as input files and generates a GTF output

file. All cluster intervals are also annotated with overlapping genomic features. Mutation

frequencies for cluster nucleotides are included as comments in the GTF output file.

This should make it simpler to isolate clusters that have nucleotides with high mutation

frequencies. If no overlapping features were found, gene names and gene ids will be

”no matches”. Figure 5.5 shows a few lines from a pyClusterReads GTF output file.

The pyClusterReads GTF output file essentially has the same layout as other pyCRAC

GTF output files. The maximum height of the cluster is indicated in the ”frame” column

(8). The hash character at the end of each line (#) shows chromosomal coordinates

of mutated nucleotides within the cluster interval and their mutation frequencies. For

example, # 114099S100.0 indicates that 100% of the nucleotides in position 114099 were

pyCRAC 1.3.2 37

5.3. PYCLUSTERREADS 38

Figure 5.5: A few lines from a pyClusterReads GTF output file

##gff-version 2

generated by pyClusterReads.py version 0.0.1, Fri Jan 18 11:59:42 2013

pyClusterReads.py -f count_output_reads.gtf -o count_output_clusters.gtf -v

chromosome feature source start end cDNAs strand height attributes

chrI cluster exon 112583 112643 6 - 5

gene_id "INT_0_114,YAL021C"; gene_name "INT_0_114,CCR4"; # 112612S75.0;

chrI cluster exon 113176 113232 3 - 3

gene_id "INT_0_114,YAL021C"; gene_name "INT_0_114,CCR4"; # 113184S100.0;

chrI cluster exon 113334 113386 2 - 2

gene_id "INT_0_114,YAL021C"; gene_name "INT_0_114,CCR4"; # 113349S50.0,113379S100.0;

chrI cluster exon 113534 113564 3 - 3

gene_id "INT_0_119,INT_0_114"; gene_name "INT_0_119,INT_0_114";

113554S33.3,113556S33.3,113557S33.3;

chrI cluster exon 113644 113691 5 - 4

gene_id "YAL020C,INT_0_114"; gene_name "ATS1,INT_0_114";

113649S50.0,113657S33.3,113679S25.0

chrI cluster exon 113912 113958 2 - 2

gene_id "YAL020C,INT_0_114"; gene_name "ATS1,INT_0_114";

113932S50.0,113946S50.0;

chrI cluster exon 113966 114066 5 - 3

gene_id "YAL020C,INT_0_114"; gene_name "ATS1,INT_0_114";

113987S50.0,114033S33.3,114039S33.3;

chrI cluster exon 114067 114130 3 - 3

gene_id "YAL020C,INT_0_114"; gene_name "ATS1,INT_0_114"; # 114099S100.0;

pyCRAC 1.3.2 38

5.3. PYCLUSTERREADS 39

substituted. By default, the tool prints to the standard output in the terminal.

5.3.3 Command line examples

Running pyClusterReads at default settings:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf -o

SolexaData_clusters.gtf

In case you only want to generate clusters for protein coding genes:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf -a protein_coding -o

SolexaData_mRNA_clusters.gtf

NOTE! This will only work if ”protein coding” is used in the ”source” column to anno-

tate protein coding genes (see Table 4.1).

What if you want to look at clusters that map to sequences flanking genes? Or your

GTF annotation file does not contain any UTR information and you are interested in de-

termining if there are any clusters just up or downstream of coding sequences? For these

things you can use the -r or - -range flag, which adds flanking sequences to all annotated

features. An example:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf -a protein_coding -r

200 -o SolexaData_mRNA_clusters_flank200.gtf

This adds 200 nucleotides to 5’ and 3’ end of all protein coding sequences (CDS) or exons

if CDS coordinates are not available.

PyClusterReads also allows the user to set a minimal number of overlapping cDNA se-

quences in clusters using the - -cic or - -cdnasinclusters flag (see Table 4.3).

For example:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf --cic=5 -o

SolexaData_clusters.gtf

pyCRAC 1.3.2 39

5.4. PYPILEUP AND PYREADALIGNER 40

At default clustering settings, a single nucleotide overlap is sufficient to form a cluster

or to join a cluster. This setting can be changed using the cluster overlap option (- -co

or - -clusteroverlap). This allows you to select for clusters with sharp peaks. An example:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf --cic=5 --co=10 -o

SolexaData_clusters.gtf

You can also set a minimum peak hight for a cluster using the - -ch or - -clusterheight flag:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf --ch=10 -o

SolexaData_clusters.gtf

By default the maximum length of a cluster is set to 100 nucleotides. This setting can

be changed using the - -cl or - -clusterlength flag. Once it reaches the maximum allowed

length, it simply starts a new cluster. An example:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf --ch=10 --cl=50 -o

SolexaData_clusters.gtf

You can also instruct the tool to only report nucleotide positions that have a specific

mutation frequency:

1 pyClusterReads.py -f SolexaData_reads.gtf --gtf=yeast.gtf --cic=5 --co=10

--mutsfreq=20 -o SolexaData_clusters.gtf

In this example only nucleotide positions that are mutated in at least 20 percent of the

clustered reads are reported.

5.4 pyPileup and pyReadAligner

The genome browser is a very useful tool to visualise read distribution on chromosomes;

however, often it is more convenient to generate separate pileup files or multiple se-

quence alignments for individual genes or chromosomal regions. Many tools exist that

can generate pileups and alignments, including HTSeq and samtools; however, pyPileup

pyCRAC 1.3.2 40

5.4. PYPILEUP AND PYREADALIGNER 41

and pyReadAligner offer features that are not available in these packages, including the

option to select reads based on the presence of mutations and making coverage plots for

exons only. Both tools can be used for analysing non-directional data, such as ChIPseq

using the - -ignorestrand flag and pyPileup can also process GTF formatted files.

5.4.1 Usage and option summary

PyPileup and pyReadAligner have almost identical options. As with all other pyCRAC

tools, to view the help menu with pyPileup or pyReadAligner, use the -h flag.

5.4.2 Default behaviour

PyPileup and pyReadAligner require four input files: (1) a file containing the mapping

data (-f option), (2) a GTF feature file (- -gtf flag), (3) a genomic reference sequence file

in the tab format (- -tab) and (4) a text file containing information about the genes/-

transcripts or chromosomal regions of interest (-g or - -chr options). If the - -gtf or - -tab

options are not provided; the tools will use the default yeast annotation and genomic

sequence files. For BAM/SAM/GTF input files, the file type also needs to be included

in the command line (i.e. - -file type=sam or - -file type=gtf). Two types of gene/tran-

scripts files are supported. The first type contains a single column with gene names or

transcript names, or if these are not available, gene ids or transcript ids. Both programs

automatically detect gene or transcript names. Use the -g flag to input single column

gene/transcript list files in pyPileup and pyReadAligner. NOTE! The names provided

in a gene list file should be identical to the ones provided in the GTF file and no ad-

ditional spaces or empty lines should be present in the file. By default pyPileup and

pyReadAligner analyse ALL of the mapped reads in your data and this can take some

time; however, for multiple sequence alignments it is rarely necessary to more than a

few thousand reads, particularly when a large number of reads mapped to your genes of

interest. For pyPileup, a hundred thousand to one million reads is usually more than

enough (-m 100000). For pyReadAligner several thousand is usually sufficient (-m 1000).

Both tools also provide a - -limit flag that allows you to set a maximum for the number

cDNAs mapped to gene/transcript you want to have reported.

Example of a gene/transcript list file:

RDN37-1

SNR17A

YOR078C

RPL7A

pyCRAC 1.3.2 41

5.4. PYPILEUP AND PYREADALIGNER 42

Both programs also accept the tab-delimited format described in section 4.4.3 in combi-

nation with the - -chr flag. Example:

RDN37-1 chrXII 451576 458433 -

NOTE! We strongly advise users to use a simple text editor like TextEdit (OS X), gedit

(Linux) or Notepad (Windows) or command line text editors such as VIM and nano to

make these files. Avoid using Microsoft office or equivalent as these programs tend to

introduce unwanted new line characters.

5.4.3 Output files

The pyPileup output format normally contains six columns in which each line consists of

the gene or feature name, the 1-based coordinate, the reference base, the number of reads

that cover that base, the number of times the reference base was substituted in reads and

the number of times the reference base was deleted in reads. PyPileup generates separate

output files for sense and anti-sense reads. PyReadAligner reports multiple sequence

alignments in a fasta format that can be viewed by programs like SeaView or BioEdit.

We have also included the pyAlignment2Tab.py script to convert pyReadAligner fasta

files into a tab-delimited file (see section 6.1.1).

5.4.4 Command line examples

Many of the common pyCRAC options (see section 4.5.1) can be used with pyReadAligner

and pyPileup. A few of these are discussed below and command line examples are pro-

vided.

Usage examples:

1 pyPileup.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g geneslist.txt

--limit=5000

1 pyReadAligner.py -f SolexaData.novo --tab=yeast.tab --limit=5000

--chr=featurelist.txt

Note that in the second example a gtf annotation file is not required because the coordi-

nates for the genes of interest were included in the featurelist.txt file.

Two major changes have been introduced in version 1.2.2. First, pyPileup and pyReadAligner

pyCRAC 1.3.2 42

5.4. PYPILEUP AND PYREADALIGNER 43

now only report reads that overlap sense with genes of interest. To generate plots or align-

ments for reads mapped anti-sense to features, you need to include the - -anti sense flag:

1 pyPileup.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g geneslist.txt

--anti_sense -o anti_sense_hits

2 pyReadAligner.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g

geneslist.txt --anti_sense -o anti_sense_alignment

pyPileup can also report counts for 5’ or 3’ ends of reads (- -5end and - -3end flags). This

can be useful if you are analysing iCLIP data (Note that versions 1.2.2 and above no

longer have - -iCLIP flag!)

For example:

1 pyPileup.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g geneslist.txt

--5end

2 pyPileup.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g geneslist.txt

--3end

To make multiple sequence alignments containing 1000 reads with deletions for each

gene/transcript in the gene list:

1 pyReadAligner.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g

geneslist.txt --limit=1000 --mutations=delsonly

To find cross-linking sites in PAR-CLIP data you can choose to make an alignment only

from cDNAs that have T-C conversions:

1 pyReadAligner.py -f PAR-CLIP_data.bam --file_type=sam --gtf=yeast.gtf

--tab=yeast.tab -g geneslist.txt --limit=1000 --mutations=TC

To include 100 bp of sequence upstream and downstream of gene/transcript chromoso-

mal coordinates use the -r option. NOTE! When using the -r flag any 5UTR and 3UTR

entries in the GTF annotation file will be ignored. An example:

1 pyReadAligner.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g

geneslist.txt --limit=1000 -r 100

pyCRAC 1.3.2 43

5.5. PYMOTIF 44

Figure 5.6: The pyPileup -s coding flag can be used to remove intron sequences. Shown
are two plots displaying the read distribution over a gene called YFG1. In the right panel,
only the hits that mapped to exons are displayed.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450 500

To
ta

l n
um

be
r o

f h
its

yfg1

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

To
ta

l n
um

be
r o

f h
its

yfg1intron

-s genomic -s coding

Both pyPileup and pyReadAligner provide the option to generate pileups/alignments

using genomic (default) or coding reference sequences (-s or - -sequence). By default ge-

nomic reference sequences are used, which include UTR and intron sequences. To limit

the analysis to exons, include the command -s coding or - -sequence=coding (see example

in Figure 5.6). The latter can be particularly useful if your genes/transcripts have a large

number of (long) introns. PyCRAC does not yet properly deal with reads overlapping

exon junctions, so these may be excluded from the output. This will be improved in

future versions of pyCRAC.

A more complex example of pyCRAC usage illustrating the flexibility of pyCRAC:

1 pyPileup.py -f SolexaData.novo --gtf=yeast.gtf --tab=yeast.tab -g geneslist.txt

--blocks --align_quality=40 -s coding --discarded=discarded.txt

--zip=output.zip

This command generates pileups for genes/transcripts listed in the geneslist.txt file. Only

cDNAs that map to coding sequences and that have an align or mapping quality of at

least 40 are considered. Discarded reads are printed to the ”discarded.txt” file and all

the output files are compressed as ”output.zip”.

5.5 pyMotif

5.5.1 Motif search algorithm

PyMotif extracts short sequences from large datasets to identify potential RNA binding

motifs. It is important to note that PyMotif only extracts k-mers from reads

pyCRAC 1.3.2 44

5.5. PYMOTIF 45

that map to genomic features. PyMotif compares the results with a control dataset,

which it generates by extracting k-mers from reads randomly distributed over the same

genomic features. For each k-mer the program calculates a standard score or Z-score

that indicates overrepresentation of the k-mer sequence in the experimental data, and is

defined as the number of standard deviations by which an actual k-mer count minus the

k-mer count from random data exceeds zero. PyMotif is not as sophisticated as popular

programs such as MEME but an advantage of using pyMotif for motif analyses is that

it is very flexible and it can process thousands of intervals fairly quickly. Many different

settings can therefore be tested in a relatively short time and the data should provide a

good basis for more detailed motif analyses. The tool produces a data-rich, but human

friendly, GTF formatted output file that can be further processed by many different tools.

NOTE!! We would strongly recommend not to process more than 20.000 intervals

so it is best to run pyMotif on the most significant peaks or clusters. Do not run pyMo-

tif on read intervals as this does not produce relevant results and will take too long to

process.

5.5.2 Usage and option summary

To access the pyMotif help menu, type pyMotif.py -h in the terminal. Many of the

common options are supported in pyMotif. These are discussed in section 4.5.1. The file

input and pyMotif specific options will be discussed below.

5.5.3 Default behaviour

PyMotif expects a GTF file as input file. Normally we use pyCalculateFDRs and py-

ClusterReads GTF output files as input files, as this reduces sequence overrepresentation

biases introduced by highly expressed genes. PyMotif requires three input files: (1) the

file containing the interval data in GTF format (-f flag), (2) a GTF feature file (- -gtf flag)

and (3) a file containing the genomic sequences in tab-delimited format (- -tab option).

The GTF feature file is required to extract reads that overlap with genomic features.

NOTE If a particular k-mer sequence is repeated many times in a sequence, it will

only be counted once, as the k-mer search results would otherwise be biased towards

homo-polymeric sequences.

pyCRAC 1.3.2 45

5.5. PYMOTIF 46

Table 5.2: Overview of output files generated by pyMotif

Outputfile Description
random k-mers count.txt Contains a list of k-mer sequences and k-mer fre-

quencies in the random dataset.
dataset k-mers count.txt Contains a list of k-mer sequences and k-mer fre-

quencies in the experimental dataset.
k-mer Z scores.txt Contains a list of k-mer sequences, Z-scores and mu-

tation frequencies.
top k-mers in genes.gtf A GTF file containing k-mer chromosomal locations,

k-mer sequences, strand and overlapping features.

5.5.4 pyMotif-specific options

The - -k min and - -k max flags allow you to set the range of k-mer sequence lengths

to be extracted from the data. By default the k-mer length is 4 to 8 nucleotides. A

very large dataset may have tens of thousands unique k-mer sequences, but quite often

only the top 100 k-mers are of interest. Use the -n or - -numberofkmers option to set

the maximum number of unique k-mer sequences you want to have reported. As stated

previously, pyMotif performs k-mer analyses on reads, cDNAs or clusters that map to

genomic features described in a GTF file. Any sequences that are mapped anti-sense

to genomic features will also be included. To ensure that all sequences are included,

annotations for intergenic regions should be added to the GTF file. Using the -a or

- -annotation option, you can instruct pyMotif to focus on reads mapped to genomic

features with a specific source name or annotation (column 2 in the GTF feature file).

By default pyMotif includes all annotations. If you are not sure what annotations are

available to you, you can run the pyGetGTFSources.py script on your GTF feature file

to extract these (see section 6.3.6).

5.5.5 Output files

Figure 5.7 shows an example of a k-mer Z scores.txt file. In this example pyMotif analysed

clusters assembled from at least 10 cDNA sequence that map to protein coding genes.

The TGTAG sequence is clearly enriched in clustered reads, indicating that the protein

of interest has a preference for binding RNAs with UGUAG motifs. Figure 5.8 shows

a few lines from a pyMotif GTF output file. In the pyMotif GTF output file columns

3 shows the k-mer sequences and column 6 contains k-mer Z-scores. The attributes in

column 9 show the gene names or genomic features in which the k-mer sequence was

found. Column 7 indicates the k-mer strand. NOTE! Because pyMotif includes reads

mapped anti-sense to genomic features, it is possible that the k-mer sequence is located

on the opposite strand from the genomic feature(s) shown in column 9.

pyCRAC 1.3.2 46

5.5. PYMOTIF 47

Figure 5.7: A Few lines from a k-mer Z scores.txt file generated by pyMotif. The first
column shows the k-mer sequence, the second column the Z-score for that motif and the
third column shows the mutation frequency, which indicates the percentage of motifs that
have at least one mutation in the sequence.

pyMotif.py -f PAR_CLIP_unique_count_output_clusters.gtf --file_type=gtf -v

Thu Oct 11 11:46:40 2012

k-mer lengths:

min: 4

max: 8

8107 clusters

k-mer Z-score

TGTAG 42.70

TGTA 38.38

GTAG 34.01

TTGTA 31.21

TGTAGA 28.53

TGTAA 28.09

TTGTAG 28.02

CTGTA 27.58

TGTAGT 26.00

GTAGT 24.88

GTAGA 24.57

ATGTA 22.71

5.5.6 Command line examples

Using pyMotif at default settings:

1 pyMotif.py -f PAR_CLIP_clusters.gtf --gtf=yeast.gtf --tab=yeast.tab

Restricting the number of k-mers in output files:

1 pyMotif.py -f PAR_CLIP_clusters.gtf --gtf=yeast.gtf --tab=yeast.tab

--numberofkmers=100

What if you want to limit the motif search to protein coding genes?

1 pyMotif.py -f PAR_CLIP_clusters.gtf --gtf=yeast.gtf --tab=yeast.tab -a

protein_coding

Or you want to look for motifs in flanking sequences but your GTF annotation files has

pyCRAC 1.3.2 47

5.5. PYMOTIF 48

Figure 5.8: A Few lines from a pyMotif ’top k-mers in features’ GTF file.

##gff-version 2

pyMotif.py -f PAR_CLIP_data_clusters.gtf -v

Thu Oct 11 11:46:42 2012

k-mer lengths:

min: 4

max: 8

total number of unique k-mers reported: 1000

total number of reads: 1061285

total number paired reads: 0

total number single reads: 850707

total number of mapped clusters: 8107

chromosome source sequence start end Z-score strand .

attributes

2-micron motif TGTAG 3370 3374 42.6971678483 + .

gene_id "R0030W"; gene_name "RAF1";

2-micron motif TGTAG 3564 3568 42.6971678483 + .

gene_id "R0030W"; gene_name "RAF1";

2-micron motif TGTAG 3990 3994 42.6971678483 + .

gene_id "INT_0_4"; gene_name "INT_0_4";

2-micron motif TGTAG 4351 4355 42.6971678483 + .

gene_id "INT_0_4"; gene_name "INT_0_4";

2-micron motif TGTAG 4715 4719 42.6971678483 + .

gene_id "INT_0_4"; gene_name "INT_0_4";

2-micron motif TGTAG 5837 5841 42.6971678483 + .

gene_id "R0040C"; gene_name "REP2";

pyCRAC 1.3.2 48

5.6. PYBINCOLLECTOR 49

no UTR information:

1 pyMotif.py -f PAR_CLIP_clusters.gtf --gtf=yeast.gtf --tab=yeast.tab -a

protein_coding -r 200

The -r 200 flag will add 200 nucleotide flanking sequence to each protein coding feature

in the GTF file. NOTE! This flag tells the GTF parser to ignore any 5UTR or 3UTR

information in the GTF annotation file.

5.6 pyBinCollector

PyBinCollector can be used to generated coverage plots for analysing the genome-wide

distribution of reads or clusters over genomic features. To do this it normalises gene or

feature lengths by dividing their sequences into equal number of bins. At default settings

it calculates nucleotide densities that map to each bin, which we define as the total

number of nucleotides from reads that map to the bin. To generate distribution profiles

for individual genes, we have included - -outputall flag. This produces tab-delimited

files for sequences, substitutions and deletions and include all the genes of interest (i.e.

protein coding, snoRNAs,etc), which allows the user to generate heat maps and box plots.

PyBinCollector accepts any pyCRAC GTF file as input file.

5.6.1 Usage and option summary

To access the help menu, type pyBinCollector.py -h in the terminal. Many of the common

options can be used with pyBinCollector. These are discussed in detail in Chapter 4.

Below we discuss the pyBinCollector-specific options and two common options.

5.6.2 Default behaviour

pyBinCollector requires two input files: (1) a pyReadCounters or pyMotif GTF file (-f

flag) and (2) a GTF feature file (- -gtf flag). It is also possible use a pyReadCounters

or pyMotif GTF file as an annotation file (see below). Like many of the other pyCRAC

tools, pyBinCollector gives you the option to focus your analysis on genomic features

that associated with specific sources or annotations (column 2 in the GTF feature file).

Sequences not mapped to genomic features will be ignored. By default pyBinCollector

looks at all annotations; however, you can also instruct the program to look specifically

in protein coding genes (e.g. -a protein coding). If you do not know what annotations

pyCRAC 1.3.2 49

5.6. PYBINCOLLECTOR 50

are available to you, you can run the pyGetGTFSources.py script on your GTF feature

file to extract these (see Table 1.2).

Usage example:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -a protein_coding -n 50 -o

motif_distribution.pileup

In this example we used the CTTG motif GTF file shown in Figure 5.8 as input file

and we wanted to analyse the distribution of this motif over all protein coding genes (-a

protein coding). Gene lengths were divided into 50 bins.

By default, the program will only report motifs that overlap sense with protein coding

features, however, using the - -substitutions or - -deletions flags, mutations can also be

reported. When you include the - -anti sense flag in the command line, only reads that

mapped antisense to features will be considered.

Usage examples:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -a protein_coding -n 50 -o

motif_distribution.pileup --substitutions

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -a protein_coding -n 50 -o

motif_distribution.pileup --deletions

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -a protein_coding -n 50 -o

motif_distribution.pileup --deletions --anti_sense

To look at the distribution of the CTTG motif over all the protein coding genes individ-

ually, one can add the - -outputall flag:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -a protein_coding -n 50

--outputall

Note that when using the outputall flag you do not have include an output file name.

Although pyBinCollector is very useful for binning features, if you leave out the -n flag

from the previous command line example, then it will produce a large table with read,

pyCRAC 1.3.2 50

5.6. PYBINCOLLECTOR 51

substitution or deletion densities for the entire gene, without binning. This can be very

useful if you want to look at the distribution of your reads/clusters transcriptome-wide.

Usage example:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -a protein_coding --outputall

Because there can be a lot of variation in read density over different genes, we would

recommend adding the - -normalize flag in combination with the - -outputall flag. This

simply divides the total number of reads covering each nucleotide position or bin by the

total number of reads covering the gene or feature:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -a protein_coding

--outputall --normalize

5.6.3 Output files

At default settings pyBinCollector prints hit densities in each bin to the standard output

and generates a pyBinCollector log text file. To print to a dedicated file name use the

-o flag. An example pileup file is shown in Figure 5.9. By default, pyBinCollector will

divide all protein coding gene sequences into 20 bins but 50 to 100 bins usually gives

satisfactory results. Very high bin numbers will ultimately increase processing times.

Also, if pyBinCollector encounters genes that are shorter than the total number of bins,

it will not include these in the analyses and report this in the pyBinCollector log file.

Figure 5.10 shows a section of a pyBinCollector pileup file generated using the - -outputall

flag. This output file is compatible with Cluster 3 (http://bonsai.hgc.jp/~mdehoon/

software/cluster/software.htm#ctv), which can be used to cluster the data. Cluster 3

output files are compatible with Java TreeView (http://jtreeview.sourceforge.net),

allowing graphical representation of the clustering results.

5.6.4 Command line examples

PyBinCollector also has a bedtool-like function that extracts intervals from the GTF

file containing that map to specific features (- -overlap) or specified bin numbers (- -

binoverlap).Consider the example discussed in section 5.6.2. Let’s say we want to know

pyCRAC 1.3.2 51

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv
http://jtreeview.sourceforge.net

5.6. PYBINCOLLECTOR 52

Figure 5.9: Shown is a section of a pyBinCollector pileup file generated using the - -
outputall flag. Gene names are listed in the first column and each following column shows
the read densities for each bin.

generated by BinCollector, Sun Mar 16 13:37:48 2014

pyBinCollector.py -f /usr/local/pyCRAC/tests/test_count_output_reads.gtf -n 20 -o test_dist.txt

bin hits_or_fraction

1 7607.0

2 8466.0

3 7755.0

4 8538.0

5 8428.0

6 8218.0

7 8693.0

8 9199.0

9 9464.0

10 9787.0

11 10197.0

12 9285.0

13 9423.0

14 10808.0

15 13055.0

16 8688.0

17 8685.0

18 7279.0

19 7602.0

20 8591.0

Figure 5.10: Section of a pyBinCollector pileup file generated by including the - -
outputall flag. Gene names are listed in the first column and each following column
shows the read densities for each bin.

AAR2 0 6 6 5 4 0 0

AAT1 0 0 0 0 0 0 0

AAT2 0 0 0 0 0 0 0

ABD1 0 0 0 1 2 3 3

ABZ1 0 0 0 0 0 0 0

ACB1 0 0 0 0 0 0 0

ACC1 0 0 0 0 0 4 0

ACE2 0 0 0 0 0 0 0

ACS1 0 0 0 1 2 2 1

ACS2 0 0 0 0 0 0 0

ADE3 0 0 4 5 5 6 6

ADE4 0 0 0 7 1 0 0....

....

....

pyCRAC 1.3.2 52

5.6. PYBINCOLLECTOR 53

which motifs overlap with 5’UTRs of mRNA coding genes:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf --overlap -s 5UTR -a

protein_coding -o motif_intervals_in_5UTR.gtf

What about introns?

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf --overlap -s intron -a

protein_coding -o motif_intervals_in_introns.gtf

What if I want to plot the distribution of all CTTG motifs throughout mRNA coding

genes without binning the features? For this you use the - -outputall flag. This generates

a large file with CTTG nucleotide densities for individual genes.

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf --outputall -a

protein_coding -o CTTG_distribution_over_mRNAs.txt

Using the - -normalize flag, for each gene it will divide the nucleotide densities for each

position by the total nucleotide densities.

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf --outputall -a

protein_coding -o CTTG_distribution_over_mRNAs.txt --normalize

I suspect that my protein only binds to mature mRNAs, so I do not need to have the

intron sequences included:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf --outputall -s coding -a

protein_coding -o CTTG_distribution_over_mRNAs.txt --normalize

We now want to know which protein coding genes have a CTTG motif at or near the 3’

end. We want to divide all gene sequences into 50 bins and ask pyBinCollector to extract

those intervals from the GTF file that mapped to the last five bins:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -n 50 --binoverlap 45 50 -o

motifs_in_3prime_end.gtf

pyCRAC 1.3.2 53

5.6. PYBINCOLLECTOR 54

The - -binoverlap flag expects two numbers, separated by a space. A threshold for the

sequence length of genomic features can also be set. In the example below pyBinCollector

will only consider genomic features that are between 500 and 1000 nucleotides long:

1 pyBinCollector -f SolexaDataCTTG.gtf --gtf=Yeast.gtf -n 50 --binoverlap 45 50

--min_length=500 --max_length=1000 -o motifs_in_3prime_end.gtf

In the following example we used pyClusterReads.py to generate a clusters GTF output

file and we would like to know which clusters overlap with 5’ ends of protein coding genes.

Then we want to identify overrepresented sequences in these clusters. Below we used the

-r 200 flag to add 200 nucleotide flanking sequences to protein coding genes.

1 pyBinCollector -f clusters.gtf --gtf=Yeast.gtf -r 200 -n 50 --binselect 1 4 -o

clusters_in_5end.gtf

Alternatively, one could only select those clusters that overlap with the 200 nucleotide

upstream region by using the -s 5UTR flag:

1 pyBinCollector -f clusters.gtf --gtf=Yeast.gtf -r 200 -n 50 -s 5UTR --binselect 1

4 -o clusters_in_5UTR.gtf

These GTF files can then be used to perform a motif analysis:

1 pyMotif.py -f clusters_in_5end.gtf

2 pyMotif.py -f clusters_in_5UTR.gtf

We often compare pyMotif results with data produced by other motif finding programs,

like the MEME suite (http://meme.sdsc.edu/). Almost all of these programs require a

fasta formatted input file. To generate a fasta file from the selected clusters, we use the

bedtools getfasta script. Make sure to include the -s option to force strandedness.

1 bedtools getfasta -bed clusters_in_5UTR.gtf -fi yeast.fasta -s -fo

clusters_in_5UTR.fasta

pyCRAC 1.3.2 54

http://meme.sdsc.edu/

5.6. PYBINCOLLECTOR 55

Figure 5.11: Distribution of deletions in and around the CUUG motif identified in Nab3
CRAC data

 0

 500

 1500

 2500

 3500

de
le

tio
n

de
ns

ity

CUUG
50 bp 50 bp

Nab3 CRAC

To run pyMotif to on the GTF file. Again we include the -r 100 flag to make sure that

pyMotif includes clusters overlapping the 100 nt UTR sequences:

1 pyMotif.py -f SolexaData_selectedbins.gtf --gtf=yeast.gtf --tab=yeast.tab -r 100

Finally, pyBinCollector also has the - -outputall flag that Complicated example:

The pyBinCollector program also prints out the distribution of deletions and substitu-

tions over genomic features. We used pyBinCollector to calculate the distribution of

deletions at and around the CTTG motifs present in protein coding genes. An example

is shown in Figure 5.11. To generate this result we used the following command line:

1 pyBinCollector.py -f Clusters_count_output.gtf --gtf=SolexaDataCTTG.gtf -n 104 -r

50 --max_length=104 -s exon

Explanation: The motifs were generated from clusters. To get the location of all the

pyCRAC 1.3.2 55

5.7. PYCALCULATEFDRS 56

mutations in clusters, we use a clusters gtf file as input file. As a gtf annotation file we

no longer use the standard yeast one but the SolexaDataCTTG.gtf file. Each CTTG

containing motif will then be associated with a gene name. The GTF2 parser does

not recognise CTTG as a feature (remember it only knows ’exon’,’CDS’,’5UTR’ and

’3UTR’) so it automatically assumes it is an ’exon’ feature and adds the genomic mapping

coordinates to the exon feature database. Genes in the database can have multiple exon

coordinates because they can contain more than one CTTG motif. To calculate the

distribution over all possible ’exon’ coordinates, we use the -s exon flag. If we would use

the default option (i.e. -s genomic), it would treat multiple exon features as a single gene

and calculate gene start and end positions from the coordinates. PyBinCollector can do

the same for introns (-s intron) and coding sequence coordinates (-s CDS). The -r flag

adds 50 nucleotides to each side of the CTTG motif found in each gene. Because we only

want to look at 4-mers and not longer motifs containing CTTG, we set the maximum

length to 104 (=50+50+4). We then divide these sequences over a 104 bins, meaning

that each bin will contain a single nucleotide. The CTTG sequence will be divided over

bins 51 to 54. The graph shows that deletions in clusters are indeed enriched over the

CTTG motif; strongly suggesting that CUUG is a bonafide RNA binding motif.

5.7 pyCalculateFDRs

Ideally with each CLIP experiment we would like to include many controls, however,

sometimes it is difficult to generate sufficient PCR product for negative control samples for

sequencing, making it difficult to assess the background level. To tackle this problem, Fred

Gage’s lab devised an algorithm that allows calculation of False Discovery Rates (FDRs)

for CLIP data lacking negative controls (see http://www.nature.com/nsmb/journal/

v16/n2/full/nsmb.1545.html). If a genomic region with a certain read coverage has

an FDR of 0.01, then this indicates that there is a one in hundred probability that this

region is not significantly enriched (i.e false positive). This approach is a good statistical

method to further analyse your data, however, short genes with high read coverage will

less frequently have low FDR values. Such features are tRNAs, snoRNAs and perhaps

miRNAs. In these cases it might be worth adding flanking sequences using the -r flag.

A similar algorithm was later incorporated into Pyicos (http://regulatorygenomics.

upf.edu/group/media/pyicos_docs/) and we have included a slightly modified version

of this algorithm in pyCalculateFDR.py. The script requires read coordinates in the bed6,

GTF or GFF format and a GTF annotation file. The user sets an FDR threshold (default

= 0.05) and the program calculates for each genomic feature the minimum coverage height

required to obtain an FDR lower or equal than the threshold. It generates a GTF output

pyCRAC 1.3.2 56

http://www.nature.com/nsmb/journal/v16/n2/full/nsmb.1545.html
http://www.nature.com/nsmb/journal/v16/n2/full/nsmb.1545.html
http://regulatorygenomics.upf.edu/group/media/pyicos_docs/
http://regulatorygenomics.upf.edu/group/media/pyicos_docs/

5.7. PYCALCULATEFDRS 57

file that shows the genomic regions with an FDR lower or equal to the set threshold

(see Figure 5.12). It also generates a log file containing for each feature information

about coverage heights and FDR values. The algorithm takes all the reads that map to

a genomic feature and randomly distributes these over the same feature several times

(default = 100 iterations). It then compares the results with the actual coverage. For a

given coverage height (h) it calculates the probability of finding this coverage in the data

as follows:

Pdata(h) = (1/N)
∑
i≥h

n(i)

where n(i) is equal to the number of positions where the coverage equals i. We define ’N’

as the length of the gene or genomic feature:

N =
∑
i≥0

n(i) = featurelength

For each iteration in the randomised data, the probability for finding height ’h’ is calcu-

lated as follows:

Prandom(h)(1/N)
∑
i≥h

nrandom(i)

After finishing the randomisation steps, it calculates the mean probabilities and standard

deviation for finding height ’h’ in the randomised data. The FDR is then calculated as

the sum of the mean probability and standard deviation for height ’h’, divided by the

probability of finding the coverage in the actual data:

FDR(h) =
µPcontrol(h) + σPcontrol(h)

Pdata(h)

NOTE. PyCalculateFDRs.py heavily relies numpy arrays to do the calculations and

although this dramatically speeds up data processing, the program can consume quite a

lot of RAM memory when tackling very long genomic features (≥ 5 million nucleotides).

Such long features are generally very rare (only 8 in the human genome), however, when

analysing data originating from higher eukaryotes (Human, Mouse, Plant) we would

recommend running this script on a machine with at least 16GB of RAM. The current

version only does 100 iterations by default and will not allow features longer than 5 million

nucleotides. You will get slightly better results with 500 iterations or more (limited to

1000), however, this will consume a lot of memory and reduce processing speed.

pyCRAC 1.3.2 57

5.7. PYCALCULATEFDRS 58

Figure 5.12: A few lines from a pyCalculateFDRs.py GTF output file.

##gff-version 2

generated by pyCalculateFDRs version 0.0.3, Fri Dec 28 13:01:09 2012

pyCalculateFDRs.py -f unique_count_output_reads.gtf -o unique_count_output_FDRs.gtf

-m 0.05 --min=5

chromosome feature source start end minimal_coverage strand .

attributes

chrI snoRNA exon 142373 142409 37 + . gene_id "snR18";

gene_name "SNR18";

chrI protein_coding exon 106370 106413 20 - .

gene_id "YAL023C"; gene_name "PMT2";

chrI protein_coding exon 143888 143950 25 + .

gene_id "YAL002W"; gene_name "VPS8";

chrI intergenic_region exon 65407 65416 10 + .

gene_id "INT_0_80"; gene_name "INT_0_80";

chrI CUTs exon 34540 34595 5 - .

gene_id "ST3641"; gene_name "CUT438";

5.7.1 Input and output files

PyCalculateFDRs requires at least three input files: (1) a pyReadCounters GTF output

file, (2) a GTF annotation file and (3) a tab delimited file containing chromosome names

and chromosome lengths. More information about this tab delimited file and how to

generate it can be found in section 6.1.3.

For each feature in the GTF annotation file it calculates the minimum number of over-

lapping reads required to obtain an FDR ≤ than the set threshold and reports genomic

intervals with at least this read coverage in the GTF output file. Figure 5.12 shows a

few lines from a pyCalculaterFDRs.py GTF output file. The output file follows the same

layout as any other pyCRAC GTF file outputs, except that column 5 shows the lowest

read coverage of the region. To generate this output file we used the following command

line:

1 pyCalculateFDRs.py -f unique_count_output_reads.gtf -o

unique_count_output_FDRs.gtf -c chromosomelengths.txt -m 0.05 --min=5

--gtf=protein_coding_genes.gtf

As stated above, the tool also accepts bed6 and GFF formatted input files. To use these

file types you need to add the - -file type flag:

1 pyCalculateFDRs.py -f myintervals.bed --file_type=bed -o

unique_count_output_FDRs.gtf -c chromosomelengths.txt -m 0.05 --min=5

pyCRAC 1.3.2 58

5.7. PYCALCULATEFDRS 59

Figure 5.13: A few lines from a pyCalculateFDRs.py log file.

generated by pyCalculateFDRs version 0.0.3, Fri Dec 28 19:32:11 2012

pyCalculateFDRs.py -f unique_count_output_reads.gtf

-o unique_count_output_FDRs_intronless.gtf -m 0.05 --min=5

--gtf=intronless_protein_coding_with_UTR.gtf

####### chromosome chrI #######

YCR015C

coverage FDR actual_density mean_random_density

>=24 0.0 4260 0.0

23 0.000708032135397 142 0.01

22 0.00202534068174 149 0.03

21 0.00588089245981 154 0.09

20 0.00786276448056 162 0.16

19 0.0100555677884 163 0.23

18 0.0139914843309 168 0.45

17 0.0242502015449 170 1.13

16 0.0395981737816 170 3.45

15 0.0641036452189 171 7.89

--gtf=protein_coding_genes.gtf

2 pyCalculateFDRs.py -f myintervals.gff --file_type=gff -o

unique_count_output_FDRs.gtf -c chromosomelengths.txt -m 0.05 --min=5

--gtf=protein_coding_genes.gtf

Here we set the FDR threshold to 0.05 (-m 0.05) and we only analysed regions with a

read coverage of at least 5 (- -min=5). The output shows genomic intervals with an FDR

≤ 0.05.

The tool also generates a log file where for each genomic feature it reports nucleotide

densities for specific read coverages and the FDR value. A few lines of a pyCalculateFDRs

log file are shown in figure 5.13. The log shows a column with coverage, which indicates

the coverage heights found in a genomic feature. The second column shows the FDR for

that height. The third column shows the total number of nucleotides that have a coverage

of that particular height. The last column shows the average number of nucleotides with

a coverage of that height.

5.7.2 Selecting significant clusters using pyCalculateFDRs and

bedtools

The bedtools intersect tool can be used with the pyCalculateFDRs.py GTF output file

to select reads and clusters overlapping with significant regions. For example:

pyCRAC 1.3.2 59

5.7. PYCALCULATEFDRS 60

1 bedtools intersect -s -wa -a count_output_clusters.gtf -b

count_output_FDRs_005.gtf > significant_clusters.gtf

2 bedtools intersect -s -wa -a count_output_reads.gtf -b count_output_FDRs_005.gtf

> reads_significant_regions.gtf

The -s flag instructs bedtools to only compare intervals that are on the same strand and

with the -wa flag the program only outputs those intervals in the count output clusters.gtf

file that overlap with the FDRs gtf file. One could generate clusters from reads overlap-

ping with significant intervals:

1 bedtools intersect -s -wa -a count_output_reads.gtf -b count_output_FDRs_005.gtf

> reads_significant_regions.gtf

2 pyClusterReads.py -f reads_significant_regions.gtf -o significant_clusters.gtf

--co=5 --ch=10

NOTE! for pyClusterReads to work properly, the GTF input file has to be sorted by

chromosome, then by strand and then by start position. If you are not sure whether your

file is correctly sorted, you can run the following sort command line on your pyRead-

Counters GTF file:

1 sort -k1,1 -k7,7 -k4,4n reads_significant_regions.gtf >

sorted_reads_significant_regions.gtf

2 pyClusterReads.py -f sorted_reads_significant_regions.gtf -o

significant_clusters.gtf --co=5 --ch=10

The resulting clusters.gtf file could then be used with pyMotif to identify motifs from

significant regions. For example:

1 pyMotif.py -f count_output_clusters.gtf -v

The reads significant regions can also be used with pyPileup and pyReadAligner (see sec-

tions 5.4):

1 pyPileup.py -f reads_significant_regions.gtf --file_type=gtf -g genes.list

2 pyReadAligner.py -f reads_singificant_regions.gtf --file_type=gtf -g genes.list

--limit=500

pyCRAC 1.3.2 60

5.8. PYCALCULATEMUTATIONFREQUENCIES 61

5.8 pyCalculateMutationFrequencies

This tool takes three input files: (1) a GTF interval file (pyMotif, pyClusterReads or

pyCalculateFDRs output file), (2) a pyReadCounters GTF file and (3) a tab delimited

file containing chromosome names and chromosome lengths. More information about this

tab delimited file and how to generate it can be found in section 6.1.3.

For each interval in file (1), it calculates mutation frequencies for each nucleotide in the

interval. The tool produces a GTF output file with mutation frequencies added as com-

ments.

NOTE! for pyCalculateMutationFrequencies to work properly, the pyReadCounters GTF

file has to be sorted by chromosome, then by strand and then by start position. If you

modified the file and you are not sure whether your file is correctly sorted, you can run

the following sort command line:

1 sort -k1,1 -k7,7 -k4,4n count_output_reads.gtf > sorted_count_output_reads.gtf

5.8.1 Command line examples

If you want to add mutation frequencies to your pyCalculateFDRs GTF output file:

1 pyCalculateMutationFrequencies.py -i count_output_FDRs_005.gtf -r

sorted_count_output_reads.gtf -c chromosomelengths.txt -o

count_output_FDRs_005_with_mutsfreqs.gtf

Or you would like to know mutation frequencies for your enriched motifs:

1 pyCalculateMutationFrequencies.py -i mytopmotifs.gtf -r

sorted_count_output_reads.gtf -c chromosomelengths.txt -o

mytopmotifs_with_mutsfreqs.gtf

pyCRAC 1.3.2 61

Chapter 6

The pyCRAC scripts

The pyCRAC package contains numerous scripts that can be useful for converting files

to different formats or extracting information from output files. All of the scripts have

detailed help menus which can be access using the -h or - -help flag. This Chapter briefly

describes what each script does and provides command line examples.

6.1 Utilities

6.1.1 pyAlignment2Tab.py

The pyAlignment2Tab script in pyCRAC converts the pyReadAligner fasta output for-

mat into a tabular format that is easier to read in the terminal and text files.

Usage example:

1 pyAlignment2Tab.py -f sense-PAR_CLIP_RDN18-1.fasta -o 18S_alignment.tab

By default, the tool automatically prints to the standard output. To print to a file, use the

-o flag. Each line in the tab output file will contain a maximum of 90 characters, making

the alignment easier to read. You can change this setting using the - -limit flag. When

printing to the standard output, each nucleotide will be coloured, which makes it much

easier to locate mutations and therefore putative protein cross-linking sites. An example

is shown in Figure 6.1. To generate this figure we included the ”genes.list” file containing

the gene name SUP19 in a single column, and then used the command lines listed below.

1 pyReadAligner.py -f SolexaData.novo -g genes.list --blocks --limit=100

--gtf=yeast.gtf --tab=yeast.tab

2 pyAlignment2Tab.py -f sense-cDNAs_SolexaData_SUP19_genomic.fasta --limit=90

62

6.1. UTILITIES 63

Figure 6.1: PyAlignment2tab can generate colourful tab formatted alignments in the
terminal. The example here shows a handful of reads from PAR-CLIP and CRAC data
aligned to the yeast SUP19 tRNA gene. The plot above the alignment shows the corre-
sponding pyPileup result. The gaps in the sequence show deletions, whereas substitutions
are indicated in lower case.

substitutions
deletions
cDNAs

N
um

be
r o

f h
its

 1

 |.........|.........|.........|.........|.........|.........|.........|.. 82
SUP19

GGCACTATGGCCGAGTGGTTAAGGCGACAGACTTGAAATCTGTTGGGCTCTGCCCGCGCTGGTTCAAATCCTGCTGGTGTCG
 ------------------------CtACAG---TGAAATCTGTTGtGCTCTGCCCGCGCTGGTTCAAATCCTGCTGGTGT--
 ----------------------------AGACTTGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAA--------------
 ----------------------------AGACTTGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATtC-----------
 ----------------------------CTACagGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGCTGGTG---
 ----------------------------CTACagGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGCTG------
 ----------------------------AGAgCAGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGCTGGTGT--
 ----------------------------CTACagGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGCTGGTGTC-
 ----------------------------AGAgCAGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGC--------
 ----------------------------AGACTTGAAATCTGTTGGG--CTGCCCGCGCTGtTTCgAAg-------------
 ----------------------------AGAgCAGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGCTGG-----
 ------------------------------AC-aGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGCTGGgG---
 ------------------------------AC-aGAAATCTGTTGGG--CTGCCCGCGCTGGTTCAAATCCTGCTGGTGTC-
 ------------------------------AC-aGAAATCTcTTGGGCTCTGCCCGCGCTGGTTCA----------------

0

500

1000

1500

2000

2500

3000

3500

4000

substitutions
deletions
cDNAs

CRAC PAR-CLIP

0

50

100

150

200

250

300

350

400

SUP19 GGCACTATGGCCGAGTGGTTAAGGCGACAGACTTGAAATCTGTTGGGCTCTGCCCGCGCTGGTTCAAATCCTGCTGGTGTCG

 ------------------------ CGACAGACTTGAAATCTGTTGGGCTCTGCCCGCGCTGGTT------------------
 -------------------------------- cTGAAATCTGTTGGGCTCcGCCCGCGCTGGTTCAAATCCT----------
 --------------------------------- TGAAATCTcTTGGGCTCcGCCCGC-------------------------
 ----------------------------------- AAATCTGTTGcGCTCcGCCCGCG------------------------
 ----------------------------------- AAATCTGTTGGGCTCcGCCCGCGCTGG--------------------
 ----------------------------------- AAATCTGTTGGcCTCcGCCCGCGCTGGTTCAAATCCTGCT-------
 ----------------------------------- AAATCTGTcGGGCTCTGCCCGCGCTGGcTCAAATCCTGCT-------
 ----------------------------------- AAATCTGTTGGGCTCcGCCCGCGCTGGTTCAAATC------------
 ----------------------------------- AAATCTGTTGGGCTCTGCCCGC-------------------------
 ----------------------------------- AAAcCTGTTGcGCTCTGCCCGCGCTGGTTCAAATCCTGCT-------
 ----------------------------------- AAAcCTGTTGGGCTCTGCCCGCGCTGG--------------------
 ----------------------------------- AAATCTGgTGGcCTCTGCCCGCGCTGGTTCAAATCCTGCT-------
 ----------------------------------- AAATCTGTTGGGCTCcGCCCGCGCTGGTTCAAATCCTGCc-------

.........|.........|.........|.........|.........|.........|.........|.........|.. 82

substitutions
deletions
cDNAs

6.1.2 pyFasta2Tab.py

PyFasta2Tab converts fasta formatted files in to the pyCRAC-compatible tabular format.

Example command line:

1 pyFasta2tab.py -f yeastgenome.fasta

This will generate the file ”yeastgenome.tab” in the working directory.

6.1.3 pyCalculateChromosomeLengths.py

Some of the pyCRAC tools (pyGTF2BedGraph.py and pyCalculateFDRs.py) require a

tab delimited file containing chromosome name and chromosome lengths. We have in-

cluded the pyCalculateChromosomeLengths.py script to generate this file for you. It

requires the genome sequence in fasta or tab format. The .length output file is structured

as shown in figure 6.2.

The script generates a file with a .length extension. A command line example:

pyCRAC 1.3.2 63

6.2. PROCESSING FASTQ AND FASTA FORMATTED DATA 64

Figure 6.2: An example of a pyCalculateChromosomeLenghts.py output file.

2-micron 6318

Mito 85779

chrI 230208

chrII 813178

chrIII 316617

chrIV 1531919

chrIX 439885

chrV 576869

chrVI 270148

chrVII 1090947

chrVIII 562643

chrX 745741

chrXI 666454

chrXII 1078175

chrXIII 924429

chrXIV 784334

chrXV 1091289

chrXVI 948062

1 pyCalculateChromosomeLengths.py -f

/usr/local/pyCRAC/db/Saccharomyces_cerevisiae.EF2.59.1.0.fa.tab --file_type=tab

6.2 Processing fastq and fasta formatted data

6.2.1 Removing PCR duplicates by collapsing the data

PCR over-amplification can be a problem with CLIP/CRAC experiments and can give

a false impression of the actual number of reads mapped to genomic features. These du-

plicate reads can be removed using the fastx collapser (http://hannonlab.cshl.edu/

fastx_toolkit/) or the pyCRAC pyFastqDuplicateRemover tool. Both programs func-

tion by collapsing identical sequences into one.

Usage example:

1 fastx_collapser -i rawdata.fastq -o collapseddata.fasta

At the time of writing this manual, fastx collapser could not handle paired end data. If

you want to process paired-end data using fastx collapser you will need to merge the two

raw data files first. For this purpose we included the pyFastqJoiner.py script in pyCRAC.

pyCRAC 1.3.2 64

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/

6.2. PROCESSING FASTQ AND FASTA FORMATTED DATA 65

Usage example:

1 pyFastqJoiner -f rawdata_1.fastq rawdata_2.fastq -o merged_rawdata

By default pyFastqJoiner writes to the standard output and the output can therefore be

piped directly to fastx collapser:

1 pyFastqJoiner -f rawdata_1.fastq rawdata_2.fastq | fastx_collapser >

merged_rawdata.fasta

To split the data again we have included the pyFastqSplitter.py tool in pyCRAC, which

can read from the standard input:

1 pyFastqJoiner -f rawdata_1.fastq rawdata_2.fastq | fastx_collapser |

pyFastqSplitter.py --file_type=fasta --stdin -o collapsed_rawdata

NOTE that you should only provide one output file name for pyFastqSplitter.py. The

pyFastqJoiner tool can also handle gzip-compressed files and compress output files:

1 pyFastqJoiner --filetype=fastq.gz -f rawdata_1.fastq.gz rawdata_2.fastq.gz |

fastx_collapser | pyFastqSplitter.py --file_type=fasta --stdin -o

collapsed_rawdata --gzip

The main reason we wrote our own joiner and splitter scripts is because existing tools

required sequences from the forward and reverse reaction to have the same length. Hence,

it is not possible to do any sequence pre-processing or trimming steps, such as removing

adapter sequences, prior to collapsing your data. pyFastqJoiner includes a -c flag that

allows you to insert a character between the two sequences. For example, adding the -c

”:” inserts two hashes between the joined sequences. Setting the same flag in pyFastqS-

plitter will tell the tool where to split the data.

Example:

1 pyFastqJoiner --filetype=fastq.gz -f rawdata_1.fastq.gz rawdata_2.fastq.gz -c ":"

| do something else | pyFastqSplitter.py -c ":" --file_type=fasta --stdin -o

collapsed_rawdata

pyCRAC 1.3.2 65

6.2. PROCESSING FASTQ AND FASTA FORMATTED DATA 66

This does, however, cause problems with the fastx collapser tool, which will complain

that there are illegal characters in the DNA sequence. PyFastqDuplicateRemover ignores

these characters:

1 pyFastqJoiner --filetype=fastq.gz -f rawdata_1.fastq.gz rawdata_2.fastq.gz -c ":"

| pyFastqDuplicateRemover.py | pyFastqSplitter.py -c ":" --file_type=fasta

--stdin -o collapsed_rawdata

6.2.2 Removing PCR duplicates using random nucleotide infor-

mation

We routinely include three to six random nucleotides in the 5’ adapter sequence. During

demultiplexing, pyBarcodeFilter will attach the two hashes and random barcode sequence

to the read header. The pyFastqDuplicateRemover script will look at both the sequence

and look for random nucleotide sequences in the header (see Figure ??). The pyFastqDu-

plicateRemover tool has the added advantage that it can process paired-end fastq and

fasta data directly without having to join and split the sequences.

pyFastqDuplicateRemover usage examples:

Single-end data:

1 pyFastqDuplicateRemover.py -f rawdata.fastq -o collapseddata.fasta

Paired-end data:

1 pyFastqDuplicateRemover.py -f rawdata_1.fastq -r rawdata_2.fastq -o collapseddata

NOTE When processing paired-end data you should not add a file extension to the name

of the output file.

The tool looks for two hashes near the end of the header (blue) and assumes that the

sequence following these hashes (red) is the random barcode sequence. If it encounters two

identical (paired-) end sequences with the same random barcode sequences, it will collapse

them into one sequence. The orange characters indicate that this header originates from

the forward sequencing reaction. The green characters indicate an Illumina indexing

sequence.

Although pyFastqDuplicateRemover can process paired-end data, in some cases you

might want to do multiple processing steps on your data in a stream. In this case you

pyCRAC 1.3.2 66

6.3. GTF FILE MANIPULATION TOOLS 67

Figure 6.3: pyFastqDuplicateRemover scans the header for the presence of two hashes
near the end (blue) and assumes that the sequence following these hashes (red) is the
random barcode sequence. If it encounters two identical (paired-) sequences with the same
random barcode sequences, it assumes they are PCR duplicates and collapse them into
one sequence. The orange characters indicate that this header originates from the forward
sequencing reaction. The green characters indicate an Illumina indexing sequence.

FCC0TU2ACXX:4:1101:1968:2135#ACAGTGAT1##GTTCTC

will need to join the sequences first, as described in previous examples. In the following

command lines we first split the data based on the random barcode sequence using pyBar-

codeFilter. We then joined the forward and reverse reads together. However, because the

sequence in the forward read had the barcode removed, it is shorter than the reverse read

sequence. Hence we need to add a character using the -c flag between the two sequences

so that pyFastqSplitter later on knows where the two sequences were joined. NOTE!

pyFastqDuplicateRemover produces a fasta output file so the - -file type=fasta flag must

be added to the pyFastqSplitter command line.

1 pyBarcodeFilter.py -f rawdata_1.fastq -r rawdata_2.fastq -b barcodes.txt -m 1

This produced the rawdata 1 NNNATGC.fastq and rawdata 2 NNNATGC.fastq output

files. After joining these files, you can essentially do many processing steps in a single

stream, as shown below:

1 pyFastqJoiner.py -f rawdata_1_NNNATGC.fastq rawdata_2_NNNATGC.fastq -c ":" |

pyFastqDuplicateRemover.py | do many more things | pyFastqSplitter.py

--file_type=fasta -c ":" -o collapsed_rawdata

This command line produced the collapsed rawdata 1.fasta and collapsed rawdata 2.fasta

files.

Figure 6.4 shows examples of how the data is processed during each step.

6.3 GTF file manipulation tools

6.3.1 pyCheckGTFfile.py

The GTF2 parser included in pyCRAC primarily uses the ’gene name’ to indicate fea-

ture names. If no gene name entries exist, it will look for ’gene id’ entries. One of the

pyCRAC 1.3.2 67

6.3. GTF FILE MANIPULATION TOOLS 68

Figure 6.4: Example showing what happens to the data during pyBarcodeFilter and
pyFastqDuplicateRemover processing steps. The random barcode sequence is indicated
in red, where as the barcode for the experiment is indicated in blue. If the barcode list
file contains random nucleotide (see Table 5.1) then the pyBarcodeFilter tool will attach
two hashes followed by the random barcode sequence to the header and remove the
barcode from the sequence. The pyFastqDuplicateRemover tool then collapses the data
and converts the fastq entry into the fasta format and included the random nucleotide
sequence (red) and the number of identical sequences it found in the raw data (orange)

Unprocessed fastq data:

@FCC102EACXX:3:1101:3231:2110#TGACCAAT/1

GCGCCTGCCAATTCCATCGTAATGATTAATAGGGACGGTCGGGGGCATC

+

bb_ceeeegggggiiiiiifghiihiihiiiiiiiiiifggfhiecccc

After pyBarcodeFilter:

@FCC102EACXX:3:1101:3231:2110#TGACCAAT/1##GCGCCT

TCCATCGTAATGATTAATAGGGACGGTCGGGGGCATC

+

giiiiiifghiihiihiiiiiiiiiifggfhiecccc

This entry is printed to the NNNNNNGCCAAT barcode file

After pyFastqDuplicateRemover:

>1_GCGCCT_5

TCCATCGTAATGATTAATAGGGACGGTCGGGGGCATC

pyCRAC 1.3.2 68

6.3. GTF FILE MANIPULATION TOOLS 69

biggest problems with GTF annotation files from ENSEMBL is that they sometimes con-

tain duplicated gene name entries. This will seriously confuse the pyCRAC tools and

cause errors. Therefore it is ESSENTIAL that you run the pyCheckGTFfile.py script

before you use the pyCRAC tools. It will rename duplicate gene name entries into the

corresponding transcript name or gene id and printed to the standard output. As an

alternative approach, one can modify the GTF file by ensuring that the gene name en-

tries in the GTF file are a fusion of gene id and gene name. This immediately removes

duplicate gene name entries.

Usage example:

1 pyCheckGTF.py --gtf=Homo_sapiens.GRCh37.69.gtf -o

Homo_sapiens.GRCh37.69_corrected.gtf

6.3.2 pyExtractLinesFromGTF.py

Sometimes you might be interested in looking at hits for handful of genes and you do

not want the program to load the entire GTF file into memory. You may also be inter-

ested in grabbing your favourite genes from a pyMotif or pyReadCounters GTF output

file. To simplify this, we included pyExtractLinesFromGTF.py, an homage to ”grep”.

This script takes a long list of gene or transcript names and then reads through a GTF

file and outputs (”greps”) all the lines in the GTF file that include names in the list.

These gene or transcript names should be supplied in a text file in a single column. The

script automatically prints to the terminal standard output. By default pyExtractLines-

FromGTF.py assumes that the data is coming from the standard input.

Usage example:

1 pyExtractLinesFromGTF.py -g genes_list.txt --gtf=Yeast.gtf > new.gtf

6.3.3 pyGTF2bed

pyGTF2bed can be used to convert GTF files, including all pyCRAC GTF output files

to the bed6 format.

NOTE! The GTF input file has to be sorted by chromosome, then by strand and then

by start position. The pyReadCounters tool sorts the read intervals for you so if you did

not modify the file in any way it should work without any problems. If you are not sure

whether your file is correctly sorted, you can run the following sort command line on your

pyCRAC 1.3.2 69

6.3. GTF FILE MANIPULATION TOOLS 70

pyReadCounters GTF file:

1 sort -k1,1 -k7,7 -k4,4n reads.gtf > reads_sorted.gtf

A few command line examples:

1 pyGTF2bed.py --gtf=data_count_reads.gtf -o data_count_reads.bed

To visualise the data in the UCSC genome browser, we often convert the GTF output

files to bed6 files to reduce the file size. This script also allows you can use add a name

for the experiment and a description using the -n and -d flags, respectively. In addition

to change a color for the track and the strand we included the -c and -s flags.

1 pyGTF2bed.py --gtf=data_count_reads.gtf -o data_count_reads.bed -n my_data -d

my_data

Adding -c red to the command line instructs the UCSC genome browser to color the track

red:

1 pyGTF2bed.py --gtf=data_count_reads.gtf -o data_count_reads.bed -n my_data -d

my_data -c red

The following example shows the usage of the -s flag. Here the ”+” strand will be coloured

green and the ”-” strand cyan.

1 pyGTF2bed.py --gtf=data_count_reads.gtf -o data_count_reads.bed -n my_data -d

my_data -c red -s ’green,cyan’

NOTE!!. To change the color of the strands the colours need to be in quotes, exactly

as shown in the example. If the script does not recognise the colours you entered it will

display a list of colours that you can choose from.

6.3.4 pyGTF2bedGraph

This script is an homage to the bedtools genomecoverage script. It is certainly not as fast

as bedtools genomecoverage but has the advantage that it can generate bedgraph files

pyCRAC 1.3.2 70

6.3. GTF FILE MANIPULATION TOOLS 71

for substitutions and deletions from the comments in pyReadCounters GTF files (For

example: # 4562D;). It also generates bedgraph files for both strands at the same time.

NOTE! The GTF input file has to be sorted by chromosome. The pyReadCounters tool

sorts the read intervals for you so if you did not modify the file in any way it should work

without any problems. If you are not sure whether your file is correctly sorted, you can

run the following sort command line on your pyReadCounters GTF file:

1 sort -k1,1 -k7,7 -k4,4n reads.gtf > reads_sorted.gtf

The script requires at least two inputs: a GTF file with read intervals and a tab-delimited

file containing information about the lengths of each chromosome. To generate the second

file, you can use the pyCalculateChromosomeLengths.py script (see section 6.1.3). A few

command line examples:

1 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -o mydata_intervals -c

chromosomelengths.txt

This generates bedgraph files for the read intervals specified in the data count output reads.gtf

file. By default, the script assumes that each interval is unique and ignores the number

of identical reads reported by pyReadCounters (in the ’score’ column, see section 4.4.2).

If you want to generate bedgraph files containing hits from all reads, you need to include

the - -count flag:

1 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -o mydata_intervals -c

chromosomelengths.txt --count

To make bedgraph files for substitutions:

1 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -o mydata_substitutions -c

chromosomelengths.txt -t substitutions

For deletions:

1 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -o mydata_deletions -c

chromosomelengths.txt -t deletions

pyCRAC 1.3.2 71

6.3. GTF FILE MANIPULATION TOOLS 72

This GTF conversion script can also report counts for 5’ end and 3’ ends of intervals

[NOTE!: –iCLIP flag has been removed since version 1.2.2.2]. Examples:

1 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -t startpositions -o

mydata_startpositions -c chromosomelengths.txt

2 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -t endpositions -o

mydata_endpositions -c chromosomelengths.txt

NEW since version 1.2.2.2:

If you want to normalize your data to hits per million, use the - -permillion flag. This

will ONLY work if the GTF interval file contains information about the total number of

mapped reads, so do not delete the lines starting with a hash!.

1 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -o

mydata_intervals_normalized -c chromosomelengths.txt --count --permillion

2 pyGTF2bedGraph.py --gtf=data_count_output_reads.gtf -o

mydata_startpositions_normalized -t startpositions -c chromosomelengths.txt

--count --permillion

6.3.5 pyGTF2sgr.py

This tool produces sgr files from cluster, motif or interval GTF files. It is similar to

bedtools genomecov but we have added a few features to make it also possible to ex-

tract mutation information from pyReadCounters or pyClusterReads GTF output files.

It produces output files for the + and - strand simultaneously. The sgr output files can

be loaded into the genome browsers to visualise read distribution of the intervals over

the genome. It is also quite easy to extract hits for individual features from these files.

The script requires at least two inputs: a GTF file with intervals and a tab-delimited file

containing information about the length of each chromosome. To generate the latter, you

can used the pyCalculateChromosomeLenghts.py script included in the pyCRAC package

(see section 6.1.3). Most of the flags that can be used in pyGTF2sgr are also present in

the pyGTF2bedGraph.py script (see section 6.3.4)

Usage examples:

1 pyGTF2sgr.py --gtf=data_count_output_reads.gtf -c chromosomelengths.txt -o

mydata_intervals

pyCRAC 1.3.2 72

6.3. GTF FILE MANIPULATION TOOLS 73

This produces an intervals plus strand.sgr and an intervals minus strand.sgr file. Note

that chromosomal positions without any coverage are not reported in these output files.

To include these you need to add the - -zeros flag:

1 pyGTF2sgr.py --gtf=data_count_output_reads.gtf -c chromosomelengths.txt -o

mydata_intervals --zeros

By default, the script assumes that each interval is unique and ignores the number of

identical reads reported by pyReadCounters (in the score column, see section 4.4.2). If

you want to generate an sgr file from all the reads, including duplicates, you need to

include the - -count flag:

1 pyGTF2sgr.py --gtf=data_count_output_reads.gtf -c chromosomelengths.txt -o

mydata_intervals --zeros --count

If you only want to include positions that have a certain read coverage, lets say 4000

reads, then you can filter the data using the - -min flag. All of the positions with a read

coverage less than the set minimum will be set to zero. The following command line will

only report those positions with a coverage of 4000 or higher:

1 pyGTF2sgr.py --gtf=data_count_output_reads.gtf -c chromosomelengths.txt -o

mydata_intervals_min_4000 --count --min=4000

This GTF conversion script can also report counts for 5’ end and 3’ ends of intervals

[NOTE!: –iCLIP flag has been removed since version 1.2.2.2]. Examples:

1 pyGTF2sgr.py --gtf=data_count_output_reads.gtf --type startpositions -o

mydata_startpositions -c chromosomelengths.txt --count

2 pyGTF2sgr.py --gtf=data_count_output_reads.gtf --type endpositions -o

mydata_endpositions -c chromosomelengths.txt --count

NEW since version 1.2.2.2:

If you want to normalize your data to hits per million, use the - -permillion flag. This

pyCRAC 1.3.2 73

6.3. GTF FILE MANIPULATION TOOLS 74

will ONLY work if the GTF interval file contains information about the total number of

mapped reads, so do not delete the lines starting with a hash!.

1 pyGTF2sgr.py --gtf=data_count_output_reads.gtf -o mydata_intervals_normalized -c

chromosomelengths.txt --count --permillion

2 pyGTF2sgr.py --gtf=data_count_output_reads.gtf -o

mydata_startpositions_normalized -t startpositions -c chromosomelengths.txt

--count --permillion

6.3.6 pyGetGTFSources.py

The pyGetGTFSources script extracts the source names or annotations from GTF files

(column 2, see Table 4.2). The following command line extracts the source names from

the default yeast GTF feature file:

1 pyGetGTFSources.py

--gtf=/usr/local/pyCRAC/db/Saccharomyces_cerevisiae.EF2.59.1.3.gtf

This should produce the following output:

pyGetGTFSources.py --gtf==Saccharomyces_cerevisiae.EF2.59.1.3.gtf

Thu Jul 21 18:07:17 2011

source list generated from: /usr/local/pyCRAC/db/

Saccharomyces_cerevisiae.EF2.59.1.3.gtf

rRNA

intergenic_region

SUTs

tRNA

protein_coding

pseudogene

CUTs

snoRNA

ncRNA

snRNA

The script can also count the occurrence of each source or annotation in GTF files. Fore

example:

1 pyGetGTFSources.py

--gtf=/usr/local/pyCRAC/db/Saccharomyces_cerevisiae.EF2.59.1.3.gtf --count

pyCRAC 1.3.2 74

6.3. GTF FILE MANIPULATION TOOLS 75

This should produce the following output:

pyGetGTFSources.py --gtf=Saccharomyces_cerevisiae.EF2.59.1.3.gtf --count

Sat Dec 15 11:23:04 2012

source list generated from:

/usr/local/pyCRAC/db/Saccharomyces_cerevisiae.EF2.59.1.3.gtf

pseudogene 23

snRNA 6

intergenic_region 6884

SUTs 847

tRNA 359

protein_coding 27491

rRNA 29

CUTs 925

snoRNA 79

ncRNA 15

6.3.7 pyGetGeneNamesFromGTF.py

The pyGetGeneNames.py scripts extracts gene or transcript names from a GTF file. By

default the list will be printed to the standard output in the terminal. Use the -h flag to

get a help menu.

Usage examples:

1 pyGetGeneNamesFromGTF.py --gtf=SolexaDataCTTG.gtf --attribute=gene_name >

CTTG_gene_names.txt

What if we are only interested in gene ids?

1 pyGetGeneNamesFromGTF.py --gtf=SolexaDataCTTG.gtf --attribute=gene_id >

CTTG_gene_ids.txt

You can also use the - -count flag with this script to count the occurrences of each gene

or transcript name:

1 pyGetGeneNamesFromGTF.py --gtf=SolexaDataCTTG.gtf --attribute=gene_name --count >

CTTG_gene_names.txt

pyCRAC 1.3.2 75

6.3. GTF FILE MANIPULATION TOOLS 76

6.3.8 pySelectMotifsFromGTF.py

We included pySelectMotifsFromGTF.py to make it easy for users to extract k-mers con-

taining a particular sequence from a pyMotif GTF file. As always, use the -h or - -help

flag with any pyCRAC program to get a help menu. This script requires the name of

the pyMotif GTF file (- -gtf flag), a sequence string (-m or - -motif flag) and a name of a

GTF output file (-o flag).

In the following example we use the script to extract any k-mer containing the CTTG

sequence from a pyMotif GTF file that have a Z-score of 5 or higher.

1 pySelectMotifsFromGTF.py --gtf=SolexaDataCTTG.gtf -m CTTG -z 5.0 -o

SolexaDataCTTG.gtf

Note that you can include degenerate nucleotides in your motif search string:

N = A, G, C or T

R = A or G = puRine

Y = C or T = pYrimidine

M = A or C = aroMatic

S = G or C

W = A or T

K = G or T = Keto

V = A, C or G = Not T (letter after)

D = A, G or T = Not C

H = A, C or T = Not G

B = C, G or T = Not A

So if you enter KBCTTG as search string and length=6, then the program will extract

a large number of six-mers from your data. If you set length = 8, it will look for this

pattern in a stretch of 8 nucleotides.

Example:

1 pySelectMotifsFromGTF.py --gtf=SolexaDataCTTG.gtf -m KBCTTG -l 8 -z 5.0 -o

SolexaDataKBCTTG.gtf

If you do not include an output file name, the results will be printed to the standard

pyCRAC 1.3.2 76

6.3. GTF FILE MANIPULATION TOOLS 77

output in the terminal. This allows you to pipe the output to other tools. The GTF

output file can be viewed in genome browsers (such as UCSC or IGB). If you want to

analyse the distribution of top k-mers on genomic features with a particular annotation

(for example all protein coding genes), you can use the pyBinCollector program (see sec-

tion 5.6). The SolexaDataCTTG.gtf file also contains gene name and transcript name

attributes. To obtain a list of all the genes with CTTG motifs, one can use the pyGet-

GeneNamesFromGTF.py script.

6.3.9 pyNormalizeIntervalLengths.py

pyCalculateFDRs.py or pyClusterReads.py sometimes report 10-15 nucleotide intervals

in GTF output files. These may be too short to motif searches with pyMotif or MEME or

perhaps RNAfold if you want to look at secondary structures of selected intervals. This

tool allows you to increase the length of your intervals to make these analyses possible.

With pyNormalizeIntervalLengths.py you can set (1) a fixed length for each interval or

(2) you can set a minimum length for each feature. The script requires at least two in-

puts: a GTF/bed6/GFF file with intervals and a tab-delimited file containing information

about the length of each chromosome. To generate the latter, you can used the pyCal-

culateChromosomeLenghts.py script included in the pyCRAC package (see section 6.1.3).

Usage examples:

1 pyNormalizeIntervalLengths.py -f myintervals.gtf --min=30 -o

myintervals_min30.gtf -c chromosomelengths.txt

The resulting output file will contain intervals with a minimum length of 30 nucleotides.

1 pyNormalizeIntervalLengths.py -f myintervals.gtf -l 30 -o myintervals_all30.gtf

-c chromosomelengths.txt

In this case all the intervals in the resulting output file will be 30 nucleotides in length.

pyCRAC 1.3.2 77

	Overview
	pyCRAC publication
	Background
	Summary of the available tools
	Why pyCRAC?
	License and availability
	Contributors to pyCRAC

	Installation requirements
	Quick start guide
	How to install pyCRAC
	PyCRAC test data
	Checking your GTF annotation file

	General usage information
	pyCRAC tools options documentation
	Genes and transcripts
	Aligning reads to the genomic reference sequence
	Supported file formats
	Input files must be tab-delimited
	Processing and manipulating GTF feature files
	Support for other tabular annotation formats
	Chromosomal sequence files also need to be in tab-delimited format
	Novoalign and BAM/SAM formats
	Handling paired-end data sets

	Data processing fundamentals
	Common options
	Read sequence correction
	Calculating overlap between reads and genomic features
	Alignment qualities and alignment scores
	How to deal with untranslated (UTRs) and flanking regions and how manually set their coordinates
	Reads, cDNAs, blocks, clusters and multiple alignment locations
	Using genomic and coding sequences as reference
	Filtering the data for reads with mutations
	Additional common options
	File handling options

	The pyCRAC tools
	pyBarcodeFilter
	Usage and option summary
	Output files

	pyReadCounters
	Usage and option summary
	Default behaviour
	Command line examples
	Output files

	pyClusterReads
	Default behaviour
	Output files
	Command line examples

	pyPileup and pyReadAligner
	Usage and option summary
	Default behaviour
	Output files
	Command line examples

	pyMotif
	Motif search algorithm
	Usage and option summary
	Default behaviour
	pyMotif-specific options
	Output files
	Command line examples

	pyBinCollector
	Usage and option summary
	Default behaviour
	Output files
	Command line examples

	pyCalculateFDRs
	Input and output files
	Selecting significant clusters using pyCalculateFDRs and bedtools

	pyCalculateMutationFrequencies
	Command line examples

	The pyCRAC scripts
	Utilities
	pyAlignment2Tab.py
	pyFasta2Tab.py
	pyCalculateChromosomeLengths.py

	Processing fastq and fasta formatted data
	Removing PCR duplicates by collapsing the data
	Removing PCR duplicates using random nucleotide information

	GTF file manipulation tools
	pyCheckGTFfile.py
	pyExtractLinesFromGTF.py
	pyGTF2bed
	pyGTF2bedGraph
	pyGTF2sgr.py
	pyGetGTFSources.py
	pyGetGeneNamesFromGTF.py
	pySelectMotifsFromGTF.py
	pyNormalizeIntervalLengths.py

