Dakota Reference Manual  Version 6.15
Explore and Predict with Confidence
 All Pages
loguniform_uncertain


Aleatory uncertain variable - loguniform

Topics

This keyword is related to the topics:

Specification

Alias: none

Argument(s): INTEGER

Default: no loguniform uncertain variables

Child Keywords:

Required/Optional Description of Group Dakota Keyword Dakota Keyword Description
Required lower_bounds Specify minimum values
Required upper_bounds Specify maximium values
Optional initial_point

Initial values for variables

Optional descriptors

Labels for the variables

Description

If the logarithm of an uncertain variable X has a uniform distribution, that is $\log X \sim U(L_{LU},U_{LU}),$ then X is distributed with a loguniform distribution. The distribution lower bound is $L_{LU}$ and upper bound is $L_{LU}$ The loguniform distribution has the density function:

\[f(x) = \frac{1}{ x \left( \ln(U_{LU}) - \ln(L_{LU}) \right) }\]

Theory

For some methods, including vector and centered parameter studies, an initial point is needed for the uncertain variables. When not given explicitly, these variables are initialized to their means.