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1. INTRODUCTION

RealLib3 is a library for exact real number computations. It represents real numbers via
descriptions that allow infinite precision computations.

Theoretically, exact real number computations are only possible if the real numbers are
represented as functions that can give approximations to the real number with arbitrarily
good precision. As a consequence of that, theorists usually represent functions on real
numbers as functionals that operate on the functions that represent real numbers. This
approach is safe and easy to use theoretically, but does not work well when it is actually
implemented, because of the significant overheads that handling function representations
requires.

In contrast to this approach, theRealLib3 library uses a theory that treats functions on
real numbers as simpler objects, operating on approximations of the arguments and yield-
ing approximations to the outputs. This allows much more efficient, although possibly
more complicated, implementations for functions, which can be run very close to the com-
puter hardware and can lead to computing speeds in the order of magnitude of hardware
floating point, something that had never been achieved before for exact real number com-
putations.

This manual describes the library from a user’s perspective: the interfaces it provides
for real numbers, the interfaces used to define efficient real functions, and the methods used
to link between the two levels. The manual also discusses the current state and some future
improvements to the library. None of these improvements is expected to change the inter-
face, meaning that programs written using this manual will work with the current version
and continue to work with future versions, making full use of the improved performance
that they will provide.

The theoretical background to this library is discussed in a separate paper.

2. CURRENT STATE OF THE LIBRARY

The library has recently undergone a serious redesign to allow for the implementation
of very fast machine precision computations. With this change the library has reached
Version 3.

The Version 3 interface is now defined and is described in this text. The implementation
of the library is currently under heavy development to improve the implementations of
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machine precision functions and to speed up other aspects, but the interface is not likely to
change in the near future.

The current version cannot be fully verified to be accurate because of some dependen-
cies on external functions. We are working on handling this issue, which is described in
more detail inSection 6.

3. THE REAL NUMBERS INTERFACE

The classReal is the main class in the system. It contains the description of a real
number and can be used to extract properties of this real number, as well as to apply
operations to it.

A real number can be constructed in several different ways:

• from a constant entered as adouble, taken to be exact, e.g.Real(1.5) would de-
fine the number1.5 exactly, whileReal(0.1) would define the real number which
matches the double precision representation of0.1, which is different from0.1 by
about5.55 · 10−18;

• from a string, e.g.Real(”0.1”) would define the number0.1 exactly;
• via operations applied toReal arguments, e.g.Real(1)/Real(3) will define 1

3 ex-
actly;

• via functions applied toReal arguments, e.g.sqrt(Real(2)) for
√

2;
• some real constants are predefined (Pi andLn2), others can be created using the

interfaces described inSection 4;
• from oracle functions, i.e. functions that can return arbitrarily good decimal ap-

proximations to a number.

The use the term ”constructing a real number” instead of ”assigning a value to a real
variable” here is intentional. Real numbers are represented via structures that describe the
computation through which they were computed. Every time a new operation is performed,
a new object is being created that describes the operation and contains references to the
objects that were arguments for the operation. In this sense, updating the value of a variable
of type Real usually does not mean that the objects that described the earlier value are
destroyed. The latter only happens if the variable had not been used in other operations.

The main purpose of the real numbers layer is to be able to extract properties of a
number that is constructed. These can be:

• a best1 approximation to the value indouble precision, different from the actual
value by at most 1 ulp;

• a decimal representation of the real number, which is at most different by 1 in the
least significant position2;

• strict comparisons, which will loop indefinitely if the numbers are equal. It is
impossible to test two real numbers for equality, thus the system does not provide
the operators==, <= or >=.

Let us take a closer look at how the system behaves with a few simple program frag-
ments:

[manual/fragments.cpp ]
001 #include <iostream>

1A correctly rounded approximation according to the IEEE-754 standard is not possible to achieve because
of the undecidability of the equality test for real numbers

2correct rounding is impossible to achieve, this may mean all digits are incorrect: in different scenarios the
system may print either of 1.000 and 0.999 for the real number 0.9995



REALLIB 3 3

002 #include <iomanip>
003 #include "Real.h"
004 using namespace std;
005 using namespace RealLib;
006
007 void main() {
008 InitializeRealLib();
009 Real a, b(4);
010 b = Pi / b;
011 a = sin(b);
012 cout << " sin(Pi/4) is" << a << endl;
...
031 FinalizeRealLib();
032 return 0;

033 }
Lines 1 to 5 include the necessary headers, and lines 8 and 31 perform the initialization

and finalization of the library.
Line 9 declares two variables of type Real. One of them is initialized to the default

value (which is0), the other to the constant4. Line 10 updatesb with the result of the
division of the constantPi andb. If we look at this with more detail, the system constructs
a new real number which is the result of the application of the operation to its arguments
(in this caseπ

4 ), keeping a reference to the constantPi and the object thatb was assigned
to, after which it removes the link betweenb and the constant4 object. Since this object is
still needed as argument to the division operator, it will not be deleted.

Line 11 updatesa with the result (sin π
4 =

√
2

2 ) of the functionsin applied to the argu-
mentb. That is, the system creates a new object that describes the operation “sin applied
to the object thatb links to”, and linksa to it. The link is not to the variableb, but to the
object that it linked, i.e. the real number it held,π

4 . The previous value ofa (the zero it was
implicitly initialized to) was not used anywhere, thus it is not needed any more and will be
deleted by the system.

Line 12 prints out the result. In order to do this, the system will run through the ob-
jects linked toa and generate an approximation that can be printed on the screen. This
approximation will be cached for possible later use. This fragment prints

sin(Pi/4) is 0.707107

The next fragment demonstrates a little bit more complicated case:
...
014 Real c(a ∗ 2 / sqrt(Real(2)));
015 for ( int i=0; i<1000; ++i)
016 c = sin(c);
017 cout << " sin(sin(...(1)...)) (1000 times) is" << c << endl;

...

Line 14 declaresc to be 1 using the fact that we know about the value ofb. In a
usual floating point environment such a roundabout definition would certainly introduce
a significant accuracy loss. This is not the case here: performance may suffer, but the
accuracy will still be full.

Lines 15 and 16 run a loop in whichsin is consecutively applied toc 1000 times. In
reality, this means that every run through Line 16 a new object is created that describes an
application of the functionsin to the previous object. In the end of this loop,c will point to
a structure that looks like this:
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c → sin → sin → . . . → operator/ →

 operator∗ →

 sin → operator/ →
{

Pi
4

2
sqrt → 2

At Line 17, this structure is traversed (using the cached value ofsin π
4 ) to construct an

approximation to the number which is good enough to be displayed:
sin(sin(...(1)...)) (1000 times) is 0.054593

The necessity for the structure comes from the possibility that the approximation may
be not good enough to ensure that the requested number of digits be displayed. This will
happen when we run through the next line, which requests 120 decimal digits of accuracy,
well beyond the accuracy of the default initial precision of the system:
...
019 cout << " or " << scientific << setprecision(120) << c <<
endl;

...

Here the system will check if the cached value ofc (computed in Line 17) is good
enough for the new request. Since it isn’t, this will cause the system to clear all cached
values and run through the descriptionc points to again in order to get better precision.
The new starting precision may again be insufficient, which will trigger another iteration
and this process will continue until the precision is enough or the maximum precision3 is
reached4. At the end, we see

or 5.45929715101851774031536067239940104010575369617410161283520
7082077700697973467364856621073573888729604355226314181717780e-2

Line 19, along with the following lines, also demonstrates some of the formatting ma-
nipulators that the system’s output functions respect.
...
021 cout << " the double representation of 0.1 is"
022 << fixed << noshowpoint << Real(0.1) << endl;
023 cout << " and its distance from 0.1 is"
024 << showpos << scientific << uppercase
025 << showpoint << Real(0.1) - Real(" 0.1") << endl;

...

The output of this fragment:
the double representation of 0.1 is 0.100000000000000005551115123
12578270211815834045410156250000000000000000000000000000000000000
0000000000000000000000000000 and its distance from 0.1 is
+5.551115123125782702118158340454101
56250000000000000000000000000000000000000000000000000000000000000
0000000000000000000000E-18

The other ways to extract properties of the real number are shown in the next few lines,
where you can also see thatdouble cannot even print its own value correctly:
...
026 cout << " double(0.1)< Real(\”0.1\”): "
027 << boolalpha << (Real(0.1) < Real(" 0.1")) << endl;
028 cout << " 0.1 converted to double is"

3specified as an argument ofInitializeRealLib(), seeSubsection 5.1for details
4which will cause an exception that can be caught by the user, seeSubsection 5.1
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029 << noshowpos << fixed << Real(" 0.1").AsDouble() << endl;

...

The output of this fragment:

double(0.1) < Real("0.1"): false
0.1 converted to double is 0.100000000000000005551115123125782702
11815800000000000000000000000000000000000000000000000000000000000
0000000000000000000

The following is a complete program written using only the real numbers interface to
compute the sum of the harmonic series for1000000 members. We have added some code
to track the time it takes for every stage of the computation to complete. [manual/harm.cpp ]
001 #include <iostream>
002 #include <iomanip>
003 #include <ctime>
004 #include "Real.h"
005
006 using namespace RealLib;
007 using namespace std;
008
009 #define LENGTH 1000000
010 #define MACROTOSTRING2(x) # x
011 #define MACROTOSTRING(x) MACROTOSTRING2(x)
012
013
014 Real Harmonic( const int mcnt)
015 {
016 Real one(1);
017 Real s; // initialized to 0
018 for ( int i=1; i<=mcnt; ++i) {
019 s += one/i;
020 }
021 return s;
022 }
023
024
025
026 int main()
027 {
028 clock t starttime, endtime;
029
030 cout << " Computing the sum for" MACROTOSTRING(LENGTH) "members"
<< endl;
031
032 starttime = clock();
033 InitializeRealLib();
034 {
035 Real h(Harmonic(LENGTH));
036 endtime = clock();
037 cout << " construction time:" <<
038 double (endtime - starttime) / CLOCKS PER SEC << endl;
039
040 for ( int n=10; n<500; n ∗=6) {
041 starttime = clock();
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042 cout << unitbuf << fixed << setprecision(n);
043 cout << n <<" digits:\t" << h << endl;
044 endtime = clock();
045 cout << fixed << setprecision(6);
046 cout << " prec:" << GetCurrentPrecision() << " time elapsed:
" <<
047 double (endtime - starttime) / CLOCKS PER SEC <<
endl;
048 }
049 starttime = clock();
050 }
051 FinalizeRealLib();
052 endtime = clock();
053 cout << " destruction time:" <<
054 double (endtime - starttime) / CLOCKS PER SEC << endl;
055
056
057 return 0;
058 }
059

The clock() pairs surround the regions of code that do the interesting work. First we
measure the time it takes to initialize the system and to construct the representation of
h, the real number that represents the1000000-member sum, then we consecutively time
the extraction of representations with different number of decimal digits, and finally we
measure the time needed to destroy the representation when it goes out of scope. The
extraction is the place where the actual computation is performed, and the accuracies are
chosen to require a single new iteration through the representation.

The result of the execution5 of this program:
Computing the sum for 1000000 members
construction time: 3.845
9 digits: 14.3927267
prec: 4 time elapsed: 24.806
63 digits: 14.39272672286572363138112749318858767664480001374431
1653418433
prec: 9 time elapsed: 20.049
441 digits: 14.3927267228657236313811274931885876766448000137
44311653418433045812958507517995003568298175947219100708359952136
07981290026416410258693009463300620054961166663914275584326654157
21973078292881951412113312203313304382897271295132146988294859455
10475507976487503260961214407016300353836916111679821767709194682
41716332637224885942289875810284852635189660006527975690853243695
24553274279125894325719391665897396284821635784056446741735506907
586
prec: 48 time elapsed: 23.463
destruction time: 0.942

As you can see from the timings, the computation time did not change much when we
went from the initial precision to9 32-bit words, and when we quintupled the precision for
the441-digit approximation. This shows that something is wrong, i.e. that too much time
is being spent somewhere else, not in performing the actual computation.

5machine used: Pentium M 1.8GHz, 2MB Level-2 cache, 512 MB DDR-333 main memory, GCC 3.3.3 in
Cygwin environment
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When the classReal is used to perform computations, the real numbers are represented
as functions and the system acts as a type-2 machine to transform functions into functions.
This is the traditional approach for real number computations, which suffers from serious
efficiency problems.

To deal with these efficiency problems, the system offers the real functions interface
where the user can create functions that work on the more efficient approximations level.
In the next section we will see how this program can be changed to make use of this and
obtain a dramatic performance improvement.

4. THE REAL FUNCTIONS INTERFACE

The functionHarmonic is the only part of the program we need to change. In particular,
Lines 13-23 change to the following: [manual/harmfun.cpp ]
013 template <class TYPE>
014 TYPE Harmonic( const long prec, const long mcnt)
015 {
016 TYPE one(1);
017 TYPE s; // initialized to 0
018 for ( int i=1; i<=mcnt; ++i) {
019 s += one/i;
020 }
021 return s;
022 }
023 CreateIntRealFunction(Harmonic);

When we execute this program, we see identical approximations, but the timings differ
significantly:

Computing the sum for 1000000 members
construction time: 0
9 digits: 14.3927267
prec: 4 time elapsed: 0.17
63 digits: 14.39272672286572363138112749318858767664480001374431
1653418433
prec: 9 time elapsed: 6.079
441 digits: 14.3927267228657236313811274931885876766448000137
44311653418433045812958507517995003568298175947219100708359952136
07981290026416410258693009463300620054961166663914275584326654157
21973078292881951412113312203313304382897271295132146988294859455
10475507976487503260961214407016300353836916111679821767709194682
41716332637224885942289875810284852635189660006527975690853243695
24553274279125894325719391665897396284821635784056446741735506907
586
prec: 48 time elapsed: 9.363
destruction time: 0

You can see that the time it takes to obtain the more accurate approximations was re-
duced at least in half. The more important difference is the change in the time it takes to
compute the least accurate approximation: instead of more than 20 seconds, this computa-
tion now takes 170 milliseconds! This is significantly less than even the time the original
program needs to construct or destroy the number’s representation.

In fact, when the machine precision is sufficient for the computation, this modified pro-
gram runs at a speed in the order of magnitude of an identical computation implemented in
double. While it is not easy to evaluate the accuracy of the latter, the results obtained using
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RealLib3 can be trusted, and the cost of obtaining them is not as dramatically different as
it is with earlier exact real number systems6.

The functions layer inRealLib3 avoids the complex processing needed to construct term
descriptions of the real numbers by using the user’s code as the description. In order to do
this, the user needs to extract the bulk of the computation into a function that is written in
a way appropriate for the system.

Let us look with more detail at the changes we needed to apply to use the real functions
interface:

• the functionHarmonic is now a function template;
• its signature is changed to accommodate one extra argument (precision) which is

not used in the function;
• theCreateIntRealFunction macro is used to create a mapping on the level of real

numbers linked to that function.

To make fully efficient use of specialized precision code, the system requires the user’s
functions to be defined as function templates. The template gets instantiated for two7

different approximation classes that share the same interface, described in detail inSub-
section 5.3. Defining the user’s function as a template allows the system to make full use
of the compiler’s optimization abilities, especially in the very fast machine precision stage
of the computation.

To be able to compute transcendental functions or numbers, the user functions are sup-
plied with an additional argument that specifies the precision the system expects from the
user’s function. The programmer can use this parameter to decide e.g. the length of the
series that approximates a number. A use of this will be shown later– our current example
ignores this parameter as it computes the needed value exactly8.

Our function is a function that takes one integer argument and returns a real number.
In the system such functions are called “nullary real functions” (as they do not take a real
argument), and are declared using this signature:

template < class TYPE >

TYPE name( unsigned int precision, UserInt userarg)

And finally, a function written for the function interface is not very useful unless it
has a representation on the level of the real numbers, where it can be applied and its re-
sults can be examined. This representation is created by the linking macro, in this case
CreateIntRealFunction, which maps a nullary real function into a function of this signa-
ture:

Real name(UserInt arg)

In the rest of the program, this function is used in the same manner as the original
version written on the real numbers layer.

Let us now look at the implementation of a transcendental function that takes one real
argument: [manual/exp.cpp ]
001 #include <iostream>
002 #include <iomanip>
003 #include "Real.h"
004

6an updated version of this manual will contain a comparison
7in the current version, the number may change in the future
8one may safely assume that the built-in operations on the function level compute exactly; although in reality

they only provide approximations, the error in these approximations is accounted for and the user can safely
ignore it
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005 using namespace RealLib;
006 using namespace std;
007
008 template <class TYPE>
009 TYPE myexp( const TYPE &arg)
010 {
011 unsigned int prec = arg.GetPrecision();
012 TYPE s(0.0);
013 TYPE m(1.0);
014
015 if (abs(arg) > 1.0) throw DomainException(" myexp");
016 if (!(abs(arg) < 1.0)) throw PrecisionException(" myexp");
017
018 for ( unsigned i=1; i<=prec; ++i) {
019 s += m;
020 m = m∗arg/i;
021 }
022 return s.AddError(m ∗3);
023 }
024 CreateUnaryRealFunction(myexp)
025
026 int main()
027 {
028 InitializeRealLib();
029 {
030 Real a(myexp(Real(0.5)));
031 Real b(exp(Real(1)));
032
033 cout << fixed << setprecision(10);
034 cout << " a(myexp(0.5)) =\t" << a << endl;
035 cout << " a∗a =\t\t" << a ∗a << endl;
036 cout << " b(exp(1)) =\t" << b << endl;
037 cout << " a∗a/b =\t\t" << setprecision(300) << showpoint
038 << a ∗a/b << endl;
039 }
040 cout << " precision used:" << FinalizeRealLib();
041
042 return 0;
043 }
044

The template functionmyexp defined on Lines 8-23 is the definition of a function that
computes the exponent of numbers in the range(−1, 1).

At Line 11 we extract the precision, given as the number of correct 32-bit words, that
we need to achieve from the argument. For this first attempts, we will not try to match
this request, but will only make sure that our approximation’s accuracy increases asprec
increases.

Line 15 makes sure we reject arguments that are clearly outside the domain of our
function. If the argument is on the boundary, we cannot recognize that and reject it, but
we can wait until the argument is inside our domain. Since our domain is an open interval,
to any real number in it there will always be an approximating interval that fits inside the
domain (when the precision is high enough). Line 16 makes sure we do not compute the
result until we have such an approximation.
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After this, Lines 18-21 compute the Maclaurin expansion of the exponent function with
prec members, and Line 22 adds an error that covers the remainder sum, provided that the
argument is within(−1, 1), which lines 15 and 16 have ensured.

Line 24 creates a mapping for the function on the level of real numbers that is in the
form

Real myexp( const Real& arg);

When the main function creates a variable of typeReal initialized tomyexp(0.5) on Line
30, the system constructs an object that describes an application of the template function
myexp to an object that describes the real number0.5. There is no need for the creation of
objects describing the steps of the computation of the Maclaurin sequence: this description
is already present as the code of the template functionmyexp.

When the value ofa is requested on Line 34, the library creates an approximation to the
argument and runs an instantiation of the template functionmyexp to it. It then examines
the error in the approximation the function returned. If the error is small enough to allow
the display of a 10-digit representation, this representation is printed.

If it is not, the system will create a better approximation to the argument and will pass
it to myexp (possibly a different instantiation of it), which will give a better approximation
to the end result, because the parameterprec has increased and the argument is bounded
in absolute value by 1. Eventually an approximation that is good enough will be obtained
and will be printed.

Here is the result of the execution of this program:

a(myexp(0.5)) = 1.6487212707
a* a = 2.7182818285
b(exp(1)) = 2.7182818285
a* a/b = 1.000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000
precision used: 272

Let us extend this example a bit. First, since the remainder bound3m (which is an
upper bound forme) on Line 22 is also valid for the real numbers 1 and -1, we would
like to expand our domain to[−1, 1] to include them. Also, we want the best possible
performance, thus we will try to satisfy the precision request. To do so, we will evaluate
so many members of the sequence thatme ≤ 2−32prec. We have two choices:

• pre-compute a bound for the number of terms needed and run the series this num-
ber of times. This will give the best performance for lower precisions, but may
require expensive extra computations for higher precisions;

• run the series until the condition is satisfied. This implies extra computations for
each iteration, but may be significantly faster in higher precisions if the argument
is smaller.

We will use both, choosing by examining the value of the argument. We will use the
inequality

(
n
3

)n
< n! <

(
n
2

)n
(for n ≥ 6) to get a the following upper bound for the

number of terms:

n(lnn− ln3) > 32prec ln 2 + 1,

or very roughlyn ≥ 23prec terms will be sufficient.
The modified function follows (the rest of the program does not change):

[manual/expimpr.cpp ]
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008 template <class TYPE>
009 TYPE myexp( const TYPE &a)
010 {
011 unsigned int prec = a.GetPrecision();
012 TYPE s(0.0);
013 TYPE m(1.0);
014
015 TYPE arg(a.TruncateTo(-1.0, 1.0, " myexp"));
016
017 if (abs(arg).weak le(0.75)) {
018 TYPE err = (TYPE(1) >> (32 ∗ prec)) / 3;
019 for ( unsigned i=1; abs(m) > err; ++i) {
020 s += m;
021 m = m∗arg/i;
022 }
023 } else {
024 if (prec < 6) prec = 6;
025 unsigned int pc = prec ∗ 23;
026 for ( unsigned i=1; i<=pc; ++i) {
027 s += m;
028 m = m∗arg/i;
029 }
030 }
031 return s.AddError(abs(m) ∗3);
032 }
033 CreateUnaryRealFunction(myexp)

This code fragment demonstrates the following:

• how we can satisfy the precision request by choosing a suitable length for the
approximating sequence;

• how we can use the member functionTruncateTo to define functions that have a
closed domain;

• how we can use a weak comparison to choose between different control paths that
lead to the same result but may have different performance.

Here is the result of running this example file:

a(myexp(0.5)) = 1.6487212707
a* a = 2.7182818285
b(exp(1)) = 2.7182818285
a* a/b = 1.000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000
precision used: 34

The precision that is needed to compute the ratio is now very close to optimal, and thus
the computation itself runs much faster.

5. LIBRARY REFERENCE

All of the library’s functions, constants and operators live in theRealLib namespace and
are included using the headerReal.h .
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5.1. Initialization and finalization, exceptions. The system must be initialized prior to
use and finalized afterwards.

void InitializeRealLib(
unsigned precStart = MachineEstimatePrecision,
unsigned precMax = 100000,

unsigned numEstAtStart = 1000);

Initializes the library. The starting precision is specified in the first argument. If nothing
is specified, the system will start with machine precision floating point approximations.

precMax specifies the maximum working precision. If the system cannot decide a prop-
erty after reaching this maximum precision, it will abort with aPrecisionException that
can be caught by the user.

numEstAtStart specifies the amount of space the library will reserve for approximations
at initialization. If more space is needed, the library will increase the storage appropriately.
In such a case, specifying a highernumEstAtStart may save a few memory reallocations.

#define MachineEstimatePrecision 4

A value that is used to indicate interval arithmetic with double precision. This is the
default initial precision in the system.

unsigned FinalizeRealLib();

Finalizes the library. All cached approximations are destroyed, the memory allocated is
freed and the current precision is returned.

unsigned ResetRealLib(

unsigned precStart);

Resets the library, setting a new working precision. Useful when one computation is
complete, and another must start from the initial precision to avoid working with unneces-
sarily high precision.

unsigned GetCurrentPrecision();

Returns the current precision in 32-bit words. A value ofMachineEstimatePrecision
means that the system is currently working with interval arithmetic with double precision.

class RealLibException : public std::exception {
char m what[128];

public :
RealLibException( const char ∗what = NULL) throw ();
virtual const char ∗what() const throw ();

};

Base class for the exception classes used in the system. The constructor takes one string
argument specifying a text message for the place the exception originated, and thewhat
member function returns a pointer to this string. The following two classes share this
interface:

class PrecisionException : public RealLibException {
public :

PrecisionException( const char ∗what = NULL) throw ();

};
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Raised by functions when the current approximation was not sufficient to know anything
about the resulting approximation. Indicates the system must start a new iteration with
higher precision.

If this exception is passed on to the user, this means that the maximum precision spec-
ified in InitializeRealLib has been reached and was not sufficient to extract the wanted
property.

class DomainException : public RealLibException {
public :

DomainException( const char ∗what = NULL) throw ();

};

Raised by functions to indicate the argument is certainly outside the domain of the
function.

5.2. ClassReal. The real numbers interface is realized by the classReal.

5.2.1. Construction, destruction, assignment.The following constructors are available to
the user:

Real::Real( const double src = 0);

Constructs aReal from a value in double precision, also acting as a default constructor
for the value0. The argument is taken to be exact, i.e. for example the real number
constructed byReal(0.1) is not the same as the real number0.1, but rather to what the
compiler thinks is its the closestdouble to 0.1.

Use for constants when you are certain they are correctly represented in double preci-
sion (e.g. integers up to253 are all correctly representable). If in doubt, use the string
initialization form.

Real::Real( const char ∗src);

Constructs aReal from a decimal string. The string is taken to be exact.Real(”0.1”)
will define the correct value, butReal(”3.1415926”) or even a1000000-digit decimal rep-
resentation will not define the numberπ (and neither wouldReal(M PI)).

If a rational number is not correctly representable as a decimal, use division of real
numbers to define it. For example,1

3 should be constructed asReal(1)/39.

typedef const char ∗ ( ∗OracleFunction) ( unsigned precision);

Real::Real(OracleFunction oracle);

This constructor can be used to construct real numbers by an user-supplied function
that can give decimal approximations of a real number for any precision (i.e. an “oracle”
function).

This constructor is provided to give the system the possibility to work with numbers
supplied from an external source (e.g. a human or a random number generator), which can
possibly be non-computable. Other uses of the constructor are also possible10, but those
are covered by the more convenient and efficient real functions layer.

The oracle function is being called for increasing values of theprecision parameter,
which specifies the function should try to present an approximation with this precision in
32-bit words, or roughly10 decimal digits per unit of precision.

9it suffices to have oneReal in the division to force division of real numbers. Division of a real number by an
integer is faster and will be correct as long as the divisor can be represented as a 32-bit integer

10e.g. defining real numbers by limitation
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The function may choose to provide more or less correct values, and the system takes
them to be correct up to a unit in the last place (ulp) of the string the function returns.
The requirement for the function is to representone real number, i.e. to make sure that
the intervals[x − ulp, x + ulp] overlap for all valuesx that the function returns with
ulp defined by the length of the decimal representation after the decimal point, and that
ulp decreases unboundedly, i.e. the length of the decimal representations increases when
precision increases.

The behavior of the system is not defined if the oracle function does not satisfy this
requirement.

Real::Real( const Real &src);

Copy constructor, used to make a copy of a real value.

Real::˜Real();

Destructor, called when a variable goes out of scope or a pointer is deleted.

Real& Real:: operator = ( const Real &rhs);

Assignment operator. Updates a real variable with a new value.

5.2.2. Operators.
Real Real:: operator - () const ;

Negation.

Real operator + ( const Real &lhs, const Real &rhs);
Real operator - ( const Real &lhs, const Real &rhs);
Real operator ∗ ( const Real &lhs, const Real &rhs);

Addition, substraction and multiplication.

Real operator / ( const Real &lhs, const Real &rhs);

Division. Not defined forrhs == 0.

Real operator ∗ ( const Real &lhs, int rhs);
Real operator ∗ ( int lhs, const Real &rhs);
Real operator / ( const Real &lhs, int rhs);
Real operator / ( int lhs, const Real &rhs);

Faster versions of multiplication and division by integer. The division by integer will
cause aDomainException if rhs is zero, and the division of integer by real is not defined
for rhs == 0.

Real::Real& operator += ( const Real &rhs);
Real::Real& operator -= ( const Real &rhs);
Real::Real& operator ∗= ( const Real &rhs);
Real::Real& operator /= ( const Real &rhs);

Real::Real& operator ∗= ( int rhs);
Real::Real& operator /= ( int rhs);

Updating versions of the operators. All of them are just shorthand forms for the operator
followed by assignment.

5.2.3. Built-in constants and functions.
extern const Real Pi;

The constantπ.
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extern const Real Ln2;

The constantln 2.

Real recip( const Real &arg);

Reciprocal, 1
arg . Not defined forarg == 0.

Real abs( const Real &arg);

Absolute value,|arg|. The result is a non-negative real number.

Real sqrt( const Real &arg);

Square root,
√

arg. Not defined for negative arguments. The result is a non-negative
real number.

Real rsqrt( const Real &arg);

Reciprocal square root,1√arg . Not defined for 0 and negative arguments. The result is a
positive real number.

Real log( const Real &arg);

Natural logarithm,ln arg. Not defined for 0 and negative arguments.

Real exp( const Real &arg);

Exponent,earg. The result is a positive real number.

Real sin( const Real &arg);

Sine,sin arg. The result is in the range[−1, 1].

Real cos( const Real &arg);

Cosine,cos arg. The result is in the range[−1, 1].

Real tan( const Real &arg);

Tangent,tan arg = sin arg
cos arg . Not defined forarg == (2k + 1)π

2 for an integerk.

Real asin( const Real &arg);

Arcsine,arcsin arg. Defined only forarg ∈ [−1, 1]. The result is in the range[−π
2 , π

2 ].

Real acos( const Real &arg);

Arccosine,arccos arg. Defined only forarg ∈ [−1, 1]. The result is in the range[0, π].

Real atan( const Real &arg);

Arctangent,arctan arg. The result is in the range(−π
2 , π

2 ).

Real atan2( const Real &y, const Real &x);

Arctangent ofyx , using the signs of both arguments to compute the angle. Can be used
to compute the argument of a complex number, or the angle between the origin of the plain
and the point with coordinates(x, y).

The function is not defined11 for the rayy == 0, x <= 0. The result is in the range
(−π, π).

11the original mathematical function has a discontinuity at these points, which makes it non-computable.
Excluding the points of discontinuity from the domain of the function makes it computable
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5.2.4. Comparison and truncation.
bool Real:: IsNegative() const ;

Returnstrue if the number is negative andfalse if the number is positive. Not defined12

if the number is zero.

bool Real:: IsPositive() const ;

Returnsfalse if the number is negative andtrue if the number is positive. Not defined if
the number is zero.

bool Real:: IsNonZero() const ;

Returnstrue if the argument is non-zero. Not defined if the number is zero. Can be used
to cause the computation to be performed at a certain spot in the user’s code or to make
sure that numbers that are close to zero do not get printed as “probable zero”.

bool operator < ( const Real &lhs, const Real &rhs);
bool operator > ( const Real &lhs, const Real &rhs);
bool operator != ( const Real &lhs, const Real &rhs);

Comparison between two real numbers. Shorthand forms for substraction followed by
resp.IsNegative, IsPositive andIsNonZero. Not defined if the two numbers are equal.

The equality test is undecidable, i.e. no function can exist that can always give a positive
answer when two numbers are equal and not complete or give a negative answer if they are
not. The system does not provide this test, nor the non-strict inequalities which, without
the possibility to recognize equality, coincide with their strict counterparts.

const Real& Real:: ForceNonZero() const ;

UsesIsNonZero to force computation until the number can be separated from zero. Will
loop indefinitely or cause an exception if the number is an actual zero. Used to make sure
that numbers that are close to zero do not get printed as “probable zero”.

5.2.5. Conversion to other types.
double Real:: AsDouble() const ;

Conversion todouble. Returns a double precision number which is at most1 ulp away
from the real number. The value returned is not always an IEEE-correct approximation to
the number13.

Numbers that are below the exponent range ofdouble are converted to 0 and numbers
that are above the range are mapped to∞ with the appropriate sign.

char ∗ Real:: AsDecimal( char ∗buffer, unsigned len) const ;

Creates a decimal approximation of the real number that fits inlen characters, which is
at most1 ulp away from the number, and returns a pointer tobuffer. The representation
is not always correctly rounded14, nor the firstlen digits of the number’s infinite decimal
representation15.

12again, the discontinuity in the discrete function is avoided by removing the points of discontinuity from its
domain

13the map between real values and their IEEE-correct representations is discontinuous thus non-computable.
Our conversion is computable, but it is not a function in the sense of real analysis, because it can map different
representations of the same real number into differentdouble values

14for the same reasons as above
15e.g. the number1.01000 . . . can be converted to the decimal representation1.0 as well as to1.1, same

reasons as above
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Scientific notation is used if the number does not fit in the space provided. This also
includes the cases where the number is smaller than the smallest number that can be
written in fixed notation in the space provided (i.e.10−len). Because this can lead to
infinite re-iteration if the number is 0, the system will return “probable zero” if the
number is smaller than10−2len and is not distinguishable from zero at the current working
precision. If this behavior is not desired (i.e. is the user knows the number is not zero),
useForceNonZero to make sure the computation is performed until number is separated
from zero, for example

printf(" %s", x.ForceNonZero().AsDecimal(buf, len));

Thebuffer must have enough space to accommodatelen characters, andlen must be at
least10.

5.2.6. Stream input and output.
std::istream& operator >>(std::istream &in, Real &r);

Stream input. Reads a string from the input stream and creates a real number from it.
The string can be of arbitrary (finite) length and is taken to be an exact decimal represen-
tation of the number.

std::ostream& operator <<(std::ostream &out, const Real& r);

Stream output. Sends a decimal approximation tor that is at most 1 ulp away to the
output stream. The representation need not be correctly rounded nor the beginning of the
number’s infinite decimal representation16.

If the number is smaller than10−prec (for fixed notation) or10−2prec (for default and
scientific notation), whereprec is the output precision (set throughsetprecision below),
and at the current working precision cannot be distinguished from 0, the system will print
“probable zero” to avoid infinite loops if a real zero needs to be printed. If this behavior is
not wanted, useForceNonZero to force computation until separation from zero can be
ensured, for example:

cout << x.ForceNonZero();

The output is influenced by the following stream manipulators:

setprecision(x): sets the precision in decimal digits. The digits of the exponent are
not counted. The actual count of the digits depends on the notation

fixed: sets fixed notation, the number is printed with the specified digits of precision
after the decimal point, regardless how long the string needs to be to ensure that

scientific: scientific (exponent) notation will be used, where the mantissa will have
one non-zero decimal before the decimal point and the specified digits of precision
after the decimal point

(notation not set): (default) prints in fixed notation if the number can fit in the spec-
ified digits of precision. If it cannot, prints in scientific notation. In both cases, the
total number of digits printed (excluding the exponent) will be as specified

showpoint: the trailing zeros and decimal point will be displayed
noshowpoint: (default) the trailing zeros and decimal point will not be shown
showpos: positive numbers will have a leading ‘+’
noshowpos: (default) no leading ‘+’ will be shown
setw(x): sets the field width (only applies for the next thing printed)

16for the same reasons as inAsDecimal above
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setfill(x): sets the character for filling the field
left: the number will be left-justified in the field
right: the number will be right-justified (default)
internal: the sign will remain to the left, while the number will be flushed to the right
lowercase: (default) use lowercase ‘e’ for the exponent
uppercase: use uppercase ‘E’ for the exponent.

5.3. The functions interface: ClassEstimate. This interface is meant to be used for
the implementation of user-defined functions or user-defined real constants. To make the
functions useable on the numbers level, they have to be defined according to one of the
signatures specified inSubsection 5.4.

On this level the functions are instantiated for different types which share the same
interface. The interface is that of the classEstimate, which we are describing in this
section.

The functions on this level work with approximations to the number. They return ap-
proximations to the result of the application of the function or operator. The nullary func-
tions (constants or functions on integers) take an additional precision argument which in-
dicates how precise the approximation should try to be. This argument is implicit in the
functions that take real arguments and can be recovered throughEstimate::GetPrecision()
on one of the real arguments. The precision indicates the approximation should try to be
correct for the specified number of 32-bit words of relative precision. The built-in functions
try to achieve this17.

The correctness requirement for the user functions is that they produce overlapping
intervals, and that the error in the produced approximations decreases as the precision
increases. In order to achieve the best possible efficiency in the system, the user should try
to produce approximations according to the precision specification.

From a user’s point of view, functions that satisfy the correctness requirement (this in-
cludes the built-in functions), can be assumed to compute real numbers exactly. The errors
they produce are handled automatically. The only errors that the user needs to address are
the result of finitely approximating an infinite sequence. An upper bound for such an error
should be explicitly specified via a call toEstimate::AddError.

Some of the operations on this level are called “weak” operations. This is to signify that
they extract properties of the current approximations, which are not necessarily properties
of the real number being approximated. Still, the weak operations can be useful to choose
a control path when both control paths return the same end result, e.g. aweak lt is used
to switch between a control path that computessin in the range[0, π

2 ] and one that com-
putes it for the range[π

2 , π]. Both can compute the approximation even if the number is
slightly outside that range, but use different algorithms and will yield results with different
precision.

5.3.1. Conversion from other types.
Estimate::Estimate( double v = 1.0);
Estimate::Estimate( const char ∗val);

Conversion fromdouble or a decimal string. The argument is taken to be correct, and
the resultingEstimate will be an approximation to that number (exact in the case ofdouble
and with decreasing error value as the precision increases in the case of a decimal string).

17but lose a few bits due to rounding errors of the basic operators
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5.3.2. Error manipulation.
Estimate Estimate:: GetError() const ;
Estimate& Estimate:: SetError( const Estimate &err);
Estimate& Estimate:: AddError( const Estimate &err);

Get, set and add to the error value in the approximation. The most often used function is
AddError, which can be used to add the error resulting from imperfectly approximating a
transcendental number via a finite part of an infinite sequence (seeSection 4for example).

GetError returns an exact approximation (i.e. one having error 0), and the other func-
tions use a value which is not smaller than the largest one within the argument interval.

Example: ifa represents the real number interval[0, 1], a.GetError() would return the
interval [0.5, 0.5], a.SetError(1) would make a representation of the interval[−0.5, 1.5],
anda.AddError(a) would return the interval[−1, 2].

i32 Estimate:: GetRelativeError() const ;

Returns a lower bound for the number of digits in the mantissa of the approximation
that are within 1-ulp of the real number. Used by the system in the process of obtaining
approximations for conversion todouble or decimal string.

u32 Estimate:: GetPrecision() const ;
Estimate& Estimate:: SetPrecision(u32 prec);

Get and set the current working precision of the number in 32-bit words. This value
controls how precise functions working on this argument should try to be (seeSection 4
for example).

5.3.3. Interval truncation.The truncation functions that follow are useful to compute
functions that have domains with closed ends. They remove the specified parts of the ap-
proximating interval, leaving only the part that is a valid argument for the function. They
raise an exception if the argument lies entirely in the unwanted part of the real line.

Estimate TruncateNegative( const char ∗origin = " Truncate") const ;

Truncates the negative part of the interval. For example,[−1, 2] will be truncated to
[0, 2], [−2,−1] will raise aDomainException(origin), and[1, 2] will remain unchanged.

Estimate TruncateBelow( double l,
const char ∗origin = " Truncate") const ;

Estimate TruncateBelow( const Estimate &l,
const char ∗origin = " Truncate") const ;

Truncates the parts below a certain lower limit. The error inl will appear in the result,
e.g. ifa is [0, 2] andl is [0.75, 1.25], a.TruncateBelow(l) will be [0.75, 2.25]. To make sure
the limit is exact, use adouble value forl.

Estimate TruncateAbove( double u,
const char ∗origin = " Truncate") const ;

Estimate TruncateAbove( const Estimate &u,
const char ∗origin = " Truncate") const ;

Truncates the parts above a certain upper limit. Use adouble constant foru to avoid
introducing extra error in the result.

Estimate TruncateTo( double l, double u,
const char ∗origin = " Truncate") const ;

Estimate TruncateTo( const Estimate &l, const Estimate &u,
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const char ∗origin = " Truncate") const ;

Truncates the input interval to fit into the specified interval.

5.3.4. Operators.
Estimate operator - ( const Estimate &arg);

Estimate operator + ( const Estimate &lhs, const Estimate &rhs);
Estimate operator - ( const Estimate &lhs, const Estimate &rhs);
Estimate operator ∗ ( const Estimate &lhs, const Estimate &rhs);
Estimate operator / ( const Estimate &lhs, const Estimate &rhs);

Estimate operator ∗ ( const Estimate &lhs, i32 rhs);
Estimate operator ∗ (i32 lhs, const Estimate &rhs);
Estimate operator / ( const Estimate &lhs, i32 rhs);
Estimate operator / (i32 lhs, const Estimate &rhs);

Negation, addition, substraction, multiplication and division, the last two also in a faster
form with one integer argument.

Division needs the argument to be non-zero, thus it will raise aPrecisionException if
the right-hand side is an interval that contains zero.

The division by integer form will raise aDomainException if the integer divisor is zero.

Estimate Estimate:: operator << (i32 howmuch) const ;
Estimate Estimate:: operator >> (i32 howmuch) const ;

Binary shift byhowmuch bits, i.e. a << n = a2n anda >> n = a2−n. Very fast
multiplication by a power of two.

5.3.5. Built-in constants and functions.
Estimate pi( unsigned int prec);

The constantπ. Returns an approximation which has close toprec correct 32-bit words.

Estimate ln2( unsigned int prec);

The constantln 2.

Estimate recip( const Estimate &arg);

Reciprocal, 1
arg . Raises aPrecisionException if the argument is an interval that contains

0.

Estimate abs( const Estimate &arg);

Absolute value,|arg|. The resulting interval may contain zero, but no negative real
number.

Estimate sqrt( const Estimate &arg);

Square root,
√

arg. If the argument interval does not intersect the domain of the func-
tion, raises aDomainException. Otherwise, the interval is truncated only to its valid part,
i.e. the intersection of the domain of the function and the argument interval.

Estimate rsqrt( const Estimate &arg);

Reciprocal square root,1√arg . Raises aDomainException for argument intervals that do
not intersect the domain, and aPrecisionException for arguments that contain zero.

Estimate log( const Estimate &arg);



REALLIB 3 21

Natural logarithm,ln arg. Raises aDomainException for argument intervals that do not
intersect the domain, and aPrecisionException for arguments that contain zero.

Estimate exp( const Estimate &arg);

Exponent,earg.

Estimate sin( const Estimate &arg);

Sine,sin arg. The resulting interval may contain numbers outside the range[−1, 1].

Estimate cos( const Estimate &arg);

Cosine,cos arg. The resulting interval may contain numbers outside the range[−1, 1].

Estimate tan( const Estimate &arg);

Tangent,tan arg = sin arg
cos arg . Raises aPrecisionException for arguments that contain

(2k + 1)π
2 for an integerk.

Estimate asin( const Estimate &arg);

Arcsine,arcsin arg. Raises aDomainException for intervals that do not intersect[−1, 1]
and truncates the argument interval to fit the domain.

Estimate acos( const Estimate &arg);

Arccosine,arccos arg. Raises aDomainException for intervals that do not intersect
[−1, 1] and truncates the argument interval to fit the domain.

Estimate atan( const Estimate &arg);

Arctangent,arctan arg.

Estimate atan2( const Estimate &y, const Estimate &x);

Arctangent ofyx , using the signs of both arguments to compute the angle. Can be used
to compute the argument of a complex number, or the angle between the origin of the plain
and the point with coordinates(x, y).

Raises aPrecisionException if the arguments contain points withy == 0 andx <= 0.

5.3.6. Strong comparisons.Strong comparisons returntrue if the comparison is true for
any real number in the interval, i.e. if the approximated real number satisfies the inequality.

bool Estimate:: IsPositive() const ;

Returnstrue if this ⊆ (0,+∞), andfalse otherwise.

bool Estimate:: IsNegative() const ;

Returnstrue if this ⊆ (−∞, 0), andfalse otherwise.

bool Estimate:: IsNonZero() const ;

Returnsfalse if 0 ∈ this, andtrue otherwise.

bool Estimate:: operator < ( const Estimate &rhs) const ;
bool Estimate:: operator > ( const Estimate &rhs) const ;
bool Estimate:: operator != ( const Estimate &rhs) const ;

Comparison operators, shorthand forms for substraction followed by resp.IsNegative,
IsPositive, IsNonZero.
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If a value of true is returned, the real numbers satisfy the inequality, but a value of
false means that either they do not satisfy it, or that this cannot be shown from the current
approximation.

5.3.7. Weak discrete functions.Weak functions work with the current approximation, more
specifically, with the center of the approximating interval. They ignore the error informa-
tion and may give information that would be wrong for the approximated real number.

They are all discrete functions that would be non-computable on the real numbers level,
but have a clearly defined meaning for its current approximation.

They are to be used to differentiate between control paths that compute the same thing
via different algorithms (possibly with different accuracy), or for debugging or progress
reports.

bool Estimate:: weak IsPositive() const ;
bool Estimate:: weak IsNegative() const ;
bool Estimate:: weak IsNonZero() const ;

bool Estimate:: weak lt( const Estimate &rhs) const ;
bool Estimate:: weak eq( const Estimate &rhs) const ;
bool Estimate:: weak gt( const Estimate &rhs) const ;

bool Estimate:: weak le( const Estimate &rhs) const ;
bool Estimate:: weak ne( const Estimate &rhs) const ;
bool Estimate:: weak ge( const Estimate &rhs) const ;

Weak comparisons: positivity test, negativity test, non-zero18, less-than, equal, greater-
than, less-than-or-equal, not-equal, greater-than-or-equal.

Estimate Estimate:: weak round() const ;

Rounding. Returns an exactEstimate, which is the integer closest to the center of the
interval. Can be used to compute the value of periodic functions.

i32 Estimate:: weak normalize() const ;

Normalization: returns an integer such thata >> a.Normalize() is within [0.5, 1). Used
to compute logarithms.

double Estimate:: weak AsDouble() const ;

Returns adouble approximation to the center of the interval, at most1
2 ulp away from

it, correctly rounded according to the IEEE-754 specification19.

char ∗Estimate:: weak AsDecimal( char ∗buffer, u32 buflen) const ;

Returns a decimal representation of the center of the interval which fits inbuflen char-
acters and is at most12 ulp away. Fixed notation is normally used, switched to scientific if
the number cannot fit in the space provided (buflen has to be 10 characters minimum).

std::ostream& operator <<(std::ostream &os, const Estimate &e);

18some implementations define this to be alwaystrue, because they do not allow a zero to be the center of an
approximation

19this specification is not correctly implemented in the current version
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Stream output, prints a number which is at most1
2 ulp away from the center of the

interval. Influenced by the same set of format manipulators as the stream output for real
numbers.

5.4. Macros linking the functions and numbers interfaces. In order to use functions
defined on the functions layer onReal arguments, the user must create a mapping of the
function using one of the linking macros.

There are linking macros for the following types of functions:

• nullary functions, i.e. real constants
• nullary functions with int, i.e. functions taking one integer argument and returning

a real number
• unary real functions
• unary functions with int, i.e. functions taking one real and one integer arguments
• binary real functions
• binary functions with int, i.e. functions taking two real and one integer arguments
• real functions on arrays
• real functions on arrays with an additional integer argument

The user’s functions have to be function templates parameterized by the type of the
approximation object. The approximation objects for which they will be instantiated all
share the interface ofEstimate, described inSubsection 5.3.

5.4.1. Nullary functions (constants).Defined using this form:
template <class TYPE>
TYPE name( unsigned int prec);

The macroCreateNullaryRealFunction(name) maps such a function to the following
real function:

Real name ();
Alternatively, the macroCreateRealConstant(constname, fun name) maps the

functionfun nameinto the constantconstnamedefined as
const Real const name;

For example,CreateRealConstant(Pi, pi) is used in the code of the system to define the
built-in constantPi from the functionpi.

5.4.2. Nullary functions with integer argument.Defined using this form:
template <class TYPE>
TYPE name( unsigned int prec, UserInt uint);

The macroCreateIntRealFunction(name) maps such a function to the following real
function:

Real name (UserInt uint);

5.4.3. Unary functions.Defined using this form:
template <class TYPE>
TYPE name( const TYPE &arg);

The macroCreateUnaryRealFunction(name) maps such a function to the following
real function:

Real name (const Real& arg);

For example,CreateUnaryRealFunction(sin) is used in the source code of the system to
define the real number functionsin from the function-layersin.
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5.4.4. Unary functions with integer argument.Defined using this form:
template <class TYPE>
TYPE name( const TYPE& arg, UserInt uint);

The macroCreateUnaryAndIntRealFunction(name) maps such a function to the
following real function:

Real name (const Real& arg, UserInt uint);

5.4.5. Binary functions.Defined using this form:
template <class TYPE>
TYPE name( const TYPE &lhs, const TYPE &rhs);

The macroCreateBinaryRealFunction(name) maps such a function to the following
real function:

Real name (const Real& lhs, const Real& rhs);

For example,CreateBinaryRealFunction(atan2) is used in the source of the system to
define the real number functionatan2 from the function-layeratan2.

5.4.6. Binary functions with integer argument.Defined using this form:
template <class TYPE>
TYPE name( const TYPE& lhs, const TYPE &rhs, UserInt uint);

The macroCreateBinaryAndIntRealFunction(name) maps such a function to the
following real function:

Real name (const Real& lhs, const Real& rhs, UserInt uint);

5.4.7. Array functions.Defined using this form:
template <class TYPE, class ARRAY>
TYPE name(ARRAY &arg);

whereARRAY is a type with the following interface:
template <class TYPE>
class ArrayInterface {
public :

long size();
TYPE& operator [] ( long index);

};

(indexed array elements can be retrieved or updated; no pointer or prev/next operations
are supported and no bounds checking is performed)

The macroCreateArrayRealFunction(name) maps such a function into the triple:
void name(Real ∗ptr, long count);
void name(std::valarray<Real> &arr);
void name(std::vector<Real> &arr);

For an example of the use of this, seeexamples/linear.cpp .

5.4.8. Array functions with integer argument.Defined using this form:
template <class TYPE>
TYPE name(ARRAY &arg, UserInt int );

whereARRAY is as above.
The macroCreateArrayAndIntRealFunction(name) maps such a function into the

triple:
void name(Real ∗ptr, long count, UserInt uint);
void name(std::valarray<Real> &arr, UserInt uint);
void name(std::vector<Real> &arr, UserInt uint);
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6. FUTURE PLANS

The current version of the machine precision layer depends onstdlib implementations
of the elementary functionssin, cos, log, exp, asin, ftoa, whose accuracy cannot be guar-
anteed. We are working towards removing all dependencies on the accuracy of external
functions. This is the current most important priority.

In parallel to this, we will be completing machine-specific optimizations of the machine
precision layer starting with Intel SSE2 implementations of the layer. The basic operations
are currently in place and offer outstanding performance, but the elementary functions
specified in the last paragraph require custom versions which will be implemented as part
of the removal of the external accuracy dependencies.

As a latter objective we aim at further improving the topmost layer,Real, where real
numbers are represented as terms. Memory handling, which constitutes a fair portion of
the processing time on that layer, should be considerably improved.

Another further objective would be the introduction of a layer between pure machine
precision and the arbitrary precision which usesdouble-double or similar arithmetic. This
will be done without any modifications to the library’s interface.

*
E-mail address: *


	1. Introduction
	2. Current state of the library
	3. The real numbers interface
	4. The real functions interface
	5. Library reference
	5.1. Initialization and finalization, exceptions
	5.2. Class name RealXYZReal
	5.3. The functions interface: Class name EstimateXYZEstimate
	5.4. Macros linking the functions and numbers interfaces

	6. Future plans

